高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

频控阵雷达:概念、原理与应用

王文钦 邵怀宗 陈慧

王文钦, 邵怀宗, 陈慧. 频控阵雷达:概念、原理与应用[J]. 电子与信息学报, 2016, 38(4): 1000-1011. doi: 10.11999/JEIT151235
引用本文: 王文钦, 邵怀宗, 陈慧. 频控阵雷达:概念、原理与应用[J]. 电子与信息学报, 2016, 38(4): 1000-1011. doi: 10.11999/JEIT151235
WANG Wenqin, SHAO Huaizong, CHEN Hui. Frequency Diverse Array Radar: Concept, Principle and Application[J]. Journal of Electronics and Information Technology, 2016, 38(4): 1000-1011. doi: 10.11999/JEIT151235
Citation: WANG Wenqin, SHAO Huaizong, CHEN Hui. Frequency Diverse Array Radar: Concept, Principle and Application[J]. Journal of Electronics and Information Technology, 2016, 38(4): 1000-1011. doi: 10.11999/JEIT151235

频控阵雷达:概念、原理与应用

doi: 10.11999/JEIT151235
基金项目: 

国家自然科学基金(61501781, 61471103),四川省科技支撑项目(2015GZ0211, 2014GZ0015)

Frequency Diverse Array Radar: Concept, Principle and Application

Funds: 

The National Natural Science Foundation of China (61501781, 61471103), Sichuan Provincial Technology Research and Development Fund (2015GZ0211, 2014GZ0015)

  • 摘要: 频控阵雷达是近年来提出的一种新体制阵列雷达技术,它能够形成具有距离依赖性的发射波束,克服了传统相控阵雷达不能有效控制发射波束的距离指向问题,并具有很多独特的应用优势。该文系统地介绍频控阵雷达的概念、原理和应用特点,全面梳理国内外关于频控阵雷达技术的研究文献,系统性地总结归纳频控阵概念、基本原理及其雷达应用特点等几个方面的研究现状,并分析频控阵雷达未来的应用前景和亟待解决的关键技术问题。
  • [1] WANG W Q. Multi-Antenna Synthetic Aperture Radar [M]. New York: CRC Press, 2013: 376-381.
    [2] ANTONIK P, WICKS W C, GRIFFITHS H D, et al. Frequency diverse array radars[C]. Proceedings of the IEEE Radar Conference, Verona, NY, 2006: 470-475.
    [3] WICKS M C and ANTONIK P. Frequency diverse array with independent modulation of frequency, amplitude, and phase [P]. US Patent 7.511, 665b2, 2008.
    [4] 霍凯, 赵晶晶. OFDM新体制雷达研究现状与发展趋势[J]. 电子与信息学报, 2015, 37(11): 2776-2789. doi: 10.11999/ JEIT150335.
    [5] HUO K and ZHAO J J. The development and prospect of the new OFDM radar[J]. Journal of Electronics Information Technology, 2015, 37(11): 2776-2789. doi: 10.11999/ JEIT150335.
    [6] 王文钦. 基于球函数的频控阵雷达发射波束形成方法[C]. 第12届全国雷达学术年会, 武汉, 2012: 529-532.
    [7] WANG W Q. Spheroidal sequence-based transmit beamforming for frequency diverse array radar[C]. The 12th China Radar Technology Conference, Wuhan, 2012: 529-532.
    [8] AYTUN A. Frequency diverse array radar[D]. [Master dissertation], Naval Postgraduate School, Monterey, California, 2010.
    [9] ANTONIK P. An investigation of a frequency diverse array [D]. [Ph.D. dissertation], University of College London, 2009.
    [10] WANG W Q. Frequency diverse array antenna: New opportunities[J]. IEEE Antennas and Propagation Magazine, 2015, 57(2): 145-152.
    [11] SAMMARTINO P F, Baker C J, and GRFFITHS H D. Frequency diverse MIMO techniques for radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 201-222.
    [12] BRADY S. Frequency diverse array radar: Signal characterization and measurement accuracy[D]. [Master dissertation], Air Force Institute of Technology, 2010.
    [13] NATHANSON F E, Reilly J P, and Cohen M N. Radar Design Principles: Signal Processing and the Environment [M]. New York: McGraw-Hill, 1990, Chapter 4.
    [14] WANG W Q. Overview of frequency diverse array in radar and navigation applications[J]. IET Radar, Sonar Navigation, 2015, doi:  10.1049/iet-rsn.2015.0464.
    [15] EKER T. A conceptual evaluation of frequency diverse arrays and novel utilization of LFMCW[D]. [Ph.D. dissertation], Middle East Technical University, 2011.
    [16] WANG W Q. Clock timing jitter analysis and compensation for bistatic synthetic aperture radar systems[J]. Fluctuation and Noise Letters, 2007, 7(3): 341-350.
    [17] WANG W Q, CAI J Y, and Yang Y W. Extracting phase noise of microwave and millimeter-wave signals by deconvolution[J]. IEE Proceedings-Science, Measurement Technology, 2006, 153(1): 7-12.
    [18] WANG W Q. Analytical modeling and simulation of phase noise in bistatic synthetic aperture radar systems[J]. Fluctuation and Noise Letters, 2006, 6(3): 297-303.
    [19] SECMEN M, DEMIR S, HIZAL A, et al. Frequency diverse array antenna with periodic time modulated pattern in range and angle[C]. Proceedings of IEEE Radar Conference, Boston, MA, 2007: 427-430.
    [20] EKER T, DEMIR S, and HIZAL A. Exploitation of Linear Frequency Modulation Continuous Waveform (LFMCW) for Frequency Diverse Arrays[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(7): 3546-3553.
    [21] ANTONIK P, WICKS M C, and GRIFFITHS H D. Multi- mission multi-mode waveform diversity[C]. Proceedings of IEEE Radar Conference, Verona, NY, 2006: 580-582.
    [22] FAROOQ J. Frequency diversity for improving synthetic aperture radar imaging[D]. [Ph.D. dissertation], Air Force Institute of Technology, 2009.
    [23] HIGGINS T. Waveform diversity and range-couple adaptive radar signal processing [D]. [Ph.D. dissertation], University of Kansas, 2011.
    [24] JONES A M. Frequency diverse array receiver architectures [D]. [Ph.D. dissertation], Wright State University, 2011.
    [25] ANTONIK P, WICKS M C, GRIFFITHS H D, et al. Range dependent beamforming using element level waveform diversity[C]. Proceedings of International Waveform Diversity and Design Conference, Las Vegas, USA, 2006: 1-4.
    [26] MUATAFA S, SIMAEK D, and TAYKAN H A E. Frequency diverse array antenna with periodic time modulated pattern in range and angle[C]. Proceedings of IEEE Radar Conference, Boston, 2007: 427-430.
    [27] HUANG S, TONG K F, and Baker C J. Frequency diverse array: simulation and design[C]. Proceedings of LAPS Antennas and Propagation Conference, Loughborough, UK, 2009: 253-256.
    [28] WICKS M C and ANTONIK P. Frequency diverse array with independent modulation of frequency, amplitude, and phase [P]. USA Patent, 7,319,427, 2008.
    [29] WICKS M C and ANTONIK P. Method and apparatus for a frequency diverse array[P]. USA Patent, 7.511,665B2, 2009.
    [30] HUANG J, TONG K F, and BAKER C J. Frequency diverse array with beam scanning feature[C]. Proceedings of IEEE International Antennas and Propagation Symposium, San Diego, 2008: 1-4.
    [31] HIGGINS T and BLUNT S D. Analysis of range-angle coupled beamforming with frequency-diverse chirps[C]. Proceedings of International Waveform Diversity and Design Conference, Kissimmee, FL, 2009: 1-4.
    [32] XU J W, ZHU S Q, and LIAO G S. Space-time-range adaptive processing for airborne radar systems[J]. IEEE Sensors Journal, 2015, 15(3): 1602-1610.
    [33] XU J W, ZHU S Q, and LIAO G S. Range ambiguous clutters suppression for airborne FDA-STAP radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(8): 1620-1631.
    [34] CETINTEPE C and DEMIR S. Multipath characteristics of frequency diverse arrays over a ground plane[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(7): 3567-3574.
    [35] ZHUANG L and LIU X Z. Precisely beam steering for frequency diverse arrays based on frequency offset selection [C]. Proceedings of International Radar Conference, Bordeaux, France, 2009: 1-4.
    [36] WANG W Q, SHAO H Z, and CAI J Y. Range-angle- dependent beamforming by frequency diverse array antenna [J]. International Journal of Antennas and Propagation, 2012, 2012(1): 1-10.
    [37] MANIKAS A, COMMIN H, and SLEIMAN A. Array manifold curves in and their complex cartan matrix [J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(4): 670-680.
    [38] EFATATHOPOULOS G and MANIKAS A. Existence and uniqueness of hyperhelical array manifold curves[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(4): 625-633.
    [39] KLEINATEUBER A K and SEGHOUANE M. On the deterministic CRB for DOA estimation in unknown noise fields using sparse sensor arrays[J]. IEEE Transactions on Signal Processing, 2008, 56(2): 860-864.
    [40] BAYAAL U and MOAEA R L. On the geometry of isotropic arrays[J] IEEE Transactions on Signal Processing, 2003, 51(6): 1469-1478.
    [41] MALLOY N J. Array manifold geometry and sparse volumetric array design optimization[C]. Proceedings of 41st International Asilomar Conference on Signals, Systems and Computer, 2007: 1257-1261.
    [42] BUHREN M, PEAABENTO M, and BOHME J. Virtual array design for array interpolation using differential geometry[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, Montreal Quebec, 2004: 229-232.
    [43] MANIKAS A and PRPUKAKIS C. Modeling and estimation of ambiguities in linear arrays[J]. IEEE Transactions on Signal Processing, 1998, 46(8): 2166-2179.
    [44] MANIKAS A, PROUKIS C, and LEKADITICS V. Investigative study of planar array ambiguities based on hyperhelical parameterization[J]. IEEE Transactions on Signal Processing, 1999, 47(6): 1532-1541.
    [45] WANG Y B, WANG W Q, and CHEN H. Linear frequency diverse array manifold geometry and ambiguity analysis[J]. IEEE Sensors Journal, 2015, 15(2): 1027-1034.
    [46] 王永兵. 频控阵阵列参数优化设计及其目标定位研究[D]. [硕士论文], 电子科技大学, 2015.
    [47] WANG Y B. Frequency diverse array parameter optimization and its applications in yarget localization[D]. [Maser dissertation], University of Electronic Science and Technology of China, 2015.
    [48] KHAN W, QUREAHI I M, SULTAN K, et al. Properties of ambiguity function of frequency diverse array radar[J]. Remote Sensing Letters, 2014, 5(9): 813-822.
    [49] DOGANDZIC A and NEHORAI A. Estimating range, velocity, and direction with a radar array[C]. Proceedings of International Conference on Acoustics, Speech, Signal Processing, Phoenix, AZ, 1999: 2773-2776.
    [50] ZHANG J J, MAALOULI G, and SUPPAPPOLA A P. Cramer-Rao lower bounds for the joint estimation of target attributes using MIMO radar[C]. Proceedings of International Waveform Diversity and Design Conference, Orlando, USA, 2009: 103-107.
    [51] HAAANIEN A, VOROBYOY S A, and GERAHMAN A B. Moving target parameters estimation in noncoherent MIMO radar systems[J]. IEEE Transactions on Signal Processing, 2012, 60(5): 2354-2361.
    [52] WANG Y B, WANG W Q, and SHAO H Z. Frequency diverse array radar Cramer-Rao lower bounds for estimating direction, range and velocity[J]. International Journal of Antennas and Propagation, 2014, 2014(1): 1-15.
    [53] KHAN W, QUREAHI I M, and SAEED S. Frequency diverse array radar with logarithmically increasing frequency offset [J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 499-502.
    [54] KHAN W and QUREAHI I M. Frequency diverse array radar with time-dependent frequency offset[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 758-761.
    [55] WANG W Q. Subarray-based frequency diverse array for target range-angle estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(4): 3057-3067.
    [56] GAO K D, SHAO H Z, CAI J Y, et al. Impact of frequency increment errors on frequency diverse array MIMO in adaptive beamforming and target localization[J]. Digital Signal Processing, 2015, 44(1): 58-67.
    [57] GAO K D, CHEN H, SHAO H Z, et al. Impacts of frequency increment error on frequency diverse array beampattern[J]. EURASIP Journal on Advances in Signal Processing, 2015, 2015(1): 1-12.
    [58] MOFFET A. Minimum-redundancy linear arrays[J]. IEEE Transactions on Antennas and Propagation, 1968, 16(2): 172-175.
    [59] BEDROAIAN S D. Nonuniform linear arrays: graph- theoretic approach to minimum redundancy[J]. Proceedings of the IEEE, 1986, 74(7): 1040-1043.
    [60] GELLI G and IZZO L. Minimum-redundancy linear arrays for cyclostationaryity-based source location[J]. IEEE Transactions on Signal Processing, 1997, 45(10): 2605-2608.
    [61] LI H and HIMED H. Transmit subaperturing for MIMO radars with collocated antennas[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(1): 55-65.
    [62] HE Q, BLUM R S, and GODRICH H. Target velocity estimation and antenna placement for MIMO radar with widely separated antennas[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(1): 79-100.
    [63] 陆珉, 许红波, 朱宇涛. MIMO雷达DOA估计阵列设计[J]. 航空学报, 2010, 31(7): 1410-1416.
    [64] LU M, XU H B, and ZHU Y T. MIMO radar DOA estimation array design[J]. Acta Aeronautica Et Astronautica Sinica, 2010, 31(7): 1410-1416.
    [65] WANG Y B, WANG W Q, CHEN H, et al. Optimal frequency diverse subarray design with Cramer-Rao lower bound minimization[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 1188-1191.
    [66] NELDER J A and MEAD R. A simplex method for function minimization[J]. Computation Journal, 1965, 7(4): 308-313.
    [67] WANG W Q. Range-angle dependent transmit beampattern synthesis for linear frequency diverse arrays[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(8): 4073-4081.
    [68] FORATER P and VEZZOA I. Application of speroidal sequences to array processing[C]. Proceedings of IEEE International Conference on Acoustics, Speech, Signal Processing, Dallas, TX, 1987: 2268-2271.
    [69] SHAO H Z, CHEN H, and LI J C. Transmit energy focusing in two-dimensional sections with frequency diverse array [C]. Proceedings of IEEE China Summit and International Conference on Signal and Information Processing, Chengdu, 2015: 104-108.
    [70] GAO K D, CHEN H, SHAO H Z, et al. A two-dimensional low-sidelobe transmit beampattern synthesis for linear frequency diverse array[C]. Proceedings of IEEE China Summit and International Conference on Signal and Information Processing, Chengdu, 2015: 408-412.
    [71] JONES A and RIGLING R. Planar frequency diverse array radar receiver architecture[C]. Proceedings of International Radar Conference, Atlanta, GA, 2012: 145-150.
    [72] XU J W, LIAO G S, and ZHU S Q. Receive beamforming of frequency diverse array radar systems[C]. Proceedings of XXXI URSI General Assembly and Scientific Symposium, Beijing, 2014: 1-4.
    [73] WANG Y M, MAO X P, ZHANG J, et al. A multi-domain collaborative filter based on polarization sensitive frequency diverse array[C]. Proceedings of IEEE Radar Conference, Cincinati, 2014: 507-511.
    [74] FAROOQ J. TEMPLE M, and SAVILLE M. Exploiting frequency diverse array processing to improve SAR imaging resolution[C]. Proceedings of IEEE Radar Conference, Rome, 2008: 1-5.
    [75] BAIZERT P, HALE T, TEMPLE M, et al. Forward-looking radar GMTI benefits using a linear frequency diverse array [J]. Electronic Letters, 2006, 42(22): 1311-1312.
    [76] SAMMARTINO P F and BAKER C J. The frequency diverse bistatic system[C]. Proceedings of IEEE International Waveform Diversity and Design Conference, Kissimmee, FL, 2009: 155-159.
    [77] SAMMARTINO P F and BAKER C J. Developments in the frequency diverse bistatic system[C]. Proceedings of IEEE Radar Conference, Pasadena, CA, 2009: 1-5.
    [78] WANG W Q, SO H C, and SHAO H Z. Nonuniform frequency diverse array for range-angle imaging of targets[J]. IEEE Sensors Journal, 2014, 14(8): 2469-2476.
    [79] WANG W Q. Two-dimensional imaging of targets by stationary frequency diverse array[J]. Remote Sensing Letters, 2013, 4(11): 1067-1076.
    [80] ZHANG L and LIU X. Application of frequency diversity to suppress grating lobes in coherent MIMO radar with separated subapertures[J]. EURASIP Journal of Advances in Signal Processing, 2009, 2009(1): 1-9.
    [81] WANG W Q. Phased-MIMO radar with frequency diversity for range-dependent beamforming[J]. IEEE Sensors Journal, 2013, 13(4): 1320-1328.
    [82] WANG W Q and SHAO H Z. Range-angle localization of targets by a double-pulse frequency diverse array radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(1): 106-114.
    [83] KHAN W, QUREAHI I M, BASIT A, et al. A double pulse MIMO frequency diverse array radar for improved range-angle localization of target[J]. Wireless Personal Communications, 2015, 82(4): 2199-2213.
    [84] WANG W Q and SO H C. Transmit subaperturing for range and angle estimation in frequency diverse array radar[J]. IEEE Transactions on Signal Processing, 2014, 62(8): 2000-2011.
    [85] XU J X, LIAO G S, ZHU S Q, et al. Joint range and angle estimation using MIMO radar with frequency diverse array [J]. IEEE Transactions on Signal Processing, 2015, 63(13): 3396-3410.
    [86] SHAO H Z, LI J C, CHEN H, et al. Adaptive frequency offset selection in frequency diverse array radar[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 1405-1408.
    [87] BASIT A, QUREAHI I M, KHAN W, et al. Cognitive frequency offset calculation for frequency diverse array radar [C]. Proceedings of 12th International Bhurban Conference on Applied Sciences and Technology, Islamabad, 2015: 641-645.
    [88] WANG W Q. Cognitive frequency diverse array radar with situational awareness[J]. IET Radar, Sonar Navigation, 2016, 10(2): 359-369.
    [89] SAEED S, QUREAHI I M, BASIT A, et al. Cognitive null steering in frequency diverse array radars[J]. International Journal of Microwave and Wireless Technologies, doi: 10.1017 /S1759078715001221: 1-9.
    [90] ZHU C L, WANG W Q, CHEN H, et al. Target direction-of- arrival estimation using nested frequency diverse array[C]. Proceedings of International Conference on Estimation, Detection and Information Fusion, Harbin, China, 2015: 200-203.
    [91] ZHU C L, WANG W Q, CHEN H, et al. Detection performance analysis of nested frequency diverse array radar [C]. Proceedings of International Radar Symposium, Dresden, Germany, 2015: 700-705.
    [92] ZHU C L, CHEN H, and SHAO H Z. Joint phased-MIMO and nested-array beamforming for increased degrees-of- freedom[J]. International Journal of Antennas and Propagation, 2015, 2015(1): 1-11.
    [93] WANG W Q and LING C. Nested array with time-delayers for target range and angle estimation[C]. Proceedings of 3rd International Workshop on Compressed Sensing Theory and Its Applications to Radar, Sonar and Remote Sensing, Pisa, Italy, 2015: 249-252.
    [94] WANG W Q. Adaptive RF stealth beamforming for frequency diverse array radar[C]. Proceedings of 23rd European Signal Processing Conference, Nice, France, 2015: 1163-1166.
    [95] DING Y, ZHANG J, and FUSCO V. Frequency diverse array OFDM transmitter for security wireless communication[J]. Electronics Letters, 2015, 51(17): 1374-1376.
    [96] HAYKIN S. Cognitive radar: a way of the future[J]. IEEE Signal Processing Magazine, 2006, 23(1): 30-40.
    [97] GUERI J R. Cognitive radar: a knowledge-aided fully adaptive approach[C]. Proceedings of IEEE Radar Conference, Washington DC, 2010: 1365-1370.
    [98] 黎湘, 范梅梅. 认知雷达及其关键技术研究进展[J]. 电子学报, 2012, 40(9): 1863-1870.
    [99] LI X and FAN M M. Research advances on cognitive radar and its key technology[J]. Acta Electronica Sinica, 2012, 40(9): 1863-1870.
    [100] BAKER C J. Intelligence and radar systems[C]. Proceedings of IEEE Radar Conference, Washington DC, 2010: 1276-1279.
    [101] GUERCI J R. Cognitive Radar: The Knowledge Aided Fully Adaptive Approach[M]. Boston/London: Artech House, 2010, Chapter 1.
    [102] JIU B, LIU H W, ZHANG L, et al. Wideband cognitive radar waveform optimization for joint target radar signature and target detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 1530-1546.
    [103] LI X, HU Z, QIU R, et al. Demonstration of cognitive radar for target localization under interference[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(4): 2440-2455.
    [104] 范梅梅. 认知雷达目标识别自适应波形设计技术研究[D]. [博士论文], 国防科学技术大学, 2012.
    [105] FAN M M. Study of cognitive radar target recognition waveform adaptive designing[D]. [Ph.D. dissertation], National University of Defense Technology, 2012.
    [106] 黎薇萍. 多发射认知雷达的波形优化设计[D].[博士论文], 西安电子科技大学, 2012.
    [107] LI W P. Multi-transmit waveform optimal design algorithms for ccognitive radars[D]. [Ph.D. dissertation], Xidian University, 2012.
    [108] 夏双志. 认知雷达信号处理[D]. [博士论文], 西安电子科技大学, 2012.
    [109] XIA S Z. Cognitive radar signal processing[D]. [Ph.D. dissertation], Xidian University, 2012.
    [110] 庄姗姗. 雷达自适应波形优化设计研究[D]. [博士论文], 南京理工大学, 2012.
    [111] ZHUANG S S. Radar adaptive waveform optimal design[D]. [Ph.D. dissertation], Nanjing University of Technology and Engineering, 2012.
    [112] 周宇. 基于认知的雷达自适应处理方法研究[D]. [博士论文], 西安电子科技大学, 2010.
    [113] ZHOU Y. Knowledge-based radar adaptive signal processing [D]. [Ph.D. dissertation], Xidian University, 2010.
    [114] HULEIHEL W, TABRIKAIN J, and SHAVIT R. Optimal adaptive waveform design for cognitive MIMO radar[J]. IEEE Transactions on Signal Processing, 2013, 61(20): 5075-5089.
    [115] 张贞凯, 周建江, 汪飞, 等. 机载相控阵雷达射频隐身时最优搜索性能研究[J]. 宇航学报, 2011, 32(9): 2023-2028.
    [116] ZHANG Z K, ZHOU J J, WANG F, et al. Research on optimal search performance of airborne phased array radar for radio frequency stealth[J]. Journal of Astronautics, 2011, 32(9): 2023-2028.
    [117] LAWRENCE D E. Low probability of intercept antenna beamforming[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(9): 2858-2865.
    [118] 张贞凯, 周建江, 田雨波 等. 基于射频隐身的采样间隔和功率设计[J]. 现代雷达, 2012, 34(4): 19-23.
    [119] ZHANG Z K, ZHOU J J, TIAN Y B, et al. Design of sampling interval and power based on radio frequency stealth [J]. Moder Radar, 2012, 34(4): 19-23.
    [120] 张贞凯, 周建江, 汪飞, 等. 基于射频隐身的相控阵雷达功率控制算法[J]. 系统工程与电子技术, 2012, 34(11): 2244-2248.
    [121] ZHANG Z K, ZHOU J J, WANG F, et al. Novel algorithm of power control based on radio frequency stealth[J]. Systems Engineering and Electronics, 2012, 34(11): 2244-2248.
    [122] 廖俊, 于雷, 俞利新, 等. 基于LPI 的相控阵雷达辐射控制方法[J]. 系统工程与电子技术, 2011, 33(12): 2638-2643.
    [123] LIAO J, YU L, YU L X, et al. Method of radiation control for phased array radar based on LPI[J]. Systems Engineering and Electronics, 2011, 33(12): 2638-2643.
    [124] ZHAO S Y and CHENG T. Research on MIMO radar RF stealth algorithm in searching mode[C]. Proceedings of IEEE International Conference on Signal Processing, Communications and Computing, Guilin, 2014: 88-93.
    [125] 杨少委, 程婷, 何子述. MIMO 雷达搜索模式下的射频隐身算法[J]. 电子与信息学报, 2014, 36(5): 1017-1022. doi:  10.3724/SP.J.1146.2013.00994.
    [126] YANG S W, CHENG T and HE Z S. Algorithm of radio frequency stealth for MIMO radar in search mode[J]. Journal of Electronics Information Technology, 2014, 36(5): 1017-1022. doi:  10.3724/SP.J.1146.2013.00994.
    [127] YANG H B, WANG J, and ZHOU J J. Design of noise modulated RBPC continuous wave RF stealth radar signal waveform[C]. Proceedings of IEEE 11th International Conference on Signal Processing, Beijing, 2012: 1760-1763.
    [128] WANG W Q. Adaptive RF stealth beamforming for frequency diverse array radar[C]. Proceedings of 23rd European Signal Processing Conference, Nice, France, 2015: 1158-1161.
    [129] DALY M P and BERNHARD J T. Directional modulation technique for phased arrays[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(9): 2633-2640.
    [130] DALY M P, DALY E I, and BERNHARD J T. Demonstration of directional modulation using a phased array[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(5): 1545-1550.
    [131] GAO K D, SHAO H Z, CAI J Y, et al. Frequency diverse array MIMO radar adaptive beamforming with range- dependent interference suppression in target localization[J]. International Journal of Antennas and Propagation, 2015, 2015(1): 1-10.
  • [1] 杨善超, 田康生, 刘仁争, 郑玉军.  基于价值优化的相控阵雷达任务调度算法, 电子与信息学报. doi: 10.11999/JEIT190147
    [2] 黄俊生, 苏洪涛.  二维相控阵-MIMO雷达联合发射子阵划分和波束形成设计方法, 电子与信息学报. doi: 10.11999/JEIT190429
    [3] 巩朋成, 王兆彬, 谭海明, 王文钦.  杂波背景下基于交替方向乘子法的低截获频控阵MIMO雷达收发联合优化方法, 电子与信息学报. doi: 10.11999/JEIT200445
    [4] 王玉玺, 黄国策, 李伟, 王叶群.  基于非单调递增频率偏移的混合相控阵MIMO雷达目标跟踪方法, 电子与信息学报. doi: 10.11999/JEIT160134
    [5] 李艳艳, 林中朝, 张玉, 赵勋旺, 路宏敏.  大型机载相控阵雷达天线受扰分析, 电子与信息学报. doi: 10.11999/JEIT160425
    [6] 罗忠涛, 何子述, 卢琨, 陈绪元.  二维阵列超视距雷达的选频方法, 电子与信息学报. doi: 10.11999/JEIT140720
    [7] 霍凯, 赵晶晶.  OFDM新体制雷达研究现状与发展趋势, 电子与信息学报. doi: 10.11999/JEIT150335
    [8] 叶朝谋, 丁建江, 俞志强, 蔡轶.  基于周期分区的相控阵雷达任务交叉调度研究, 电子与信息学报. doi: 10.3724/SP.J.1146.2013.00475
    [9] 罗涛, 关永峰, 刘宏伟, 纠博, 吴梦.  平面阵MIMO雷达发射方向图设计方法, 电子与信息学报. doi: 10.3724/SP.J.1146.2013.00568
    [10] 向聪, 罗丁利, 冯大政.  一种机载相控阵雷达杂波抑制的空时块对消器设计方法, 电子与信息学报. doi: 10.3724/SP.J.1146.2012.01643
    [11] 吴子斌, 朱宇涛, 粟毅, 李禹, 宋晓骥.  用于机载线阵三维SAR成像的MIMO阵列构型设计, 电子与信息学报. doi: 10.3724/SP.J.1146.2013.00377
    [12] 晋良念, 欧阳缮, 周丽军.  UWB MIMO穿墙雷达的阵列设计和成像方法, 电子与信息学报. doi: 10.3724/SP.J.1146.2011.01113
    [13] 胡航, 秦伟程.  电子对抗环境下ADBF相控阵雷达的阵列结构优化, 电子与信息学报. doi: 10.3724/SP.J.1146.2009.00044
    [14] 曹正林, 杨向忠, 刘卫华.  机载相控阵雷达TAS方式的实现, 电子与信息学报. doi: 10.3724/SP.J.1146.2008.00834
    [15] 齐飞林, 刘峥, 杨雪亚, 张守宏.  毫米波共形相控阵雷达导引头的阵列稀布优化, 电子与信息学报. doi: 10.3724/SP.J.1146.2008.01798
    [16] 周颖, 王雪松, 冯德军, 丹梅.  基于弹道预报的相控阵雷达监视空域研究, 电子与信息学报.
    [17] 高瑜翔, 何子述, 徐继麟, 韩春林.  光开关串扰及其对光控相控阵列系统的影响研究, 电子与信息学报.
    [18] 高瑜翔, 何子述, 徐继麟, 韩春林.  基于旁瓣电平和主瓣偏移的光控线性相控阵列子阵数确定方法, 电子与信息学报.
    [19] 廖桂生, 保铮, 张玉洪.  相控阵AEW雷达杂波抑制的简化辅助通道法, 电子与信息学报.
    [20] 廖桂生, 保铮, 张玉洪.  相控阵AEW雷达杂波自由度分析, 电子与信息学报.
  • 加载中
  • 计量
    • 文章访问数:  1176
    • HTML全文浏览量:  74
    • PDF下载量:  1523
    • 被引次数: 0
    出版历程
    • 收稿日期:  2015-11-04
    • 修回日期:  2016-03-11
    • 刊出日期:  2016-04-19

    目录

      /

      返回文章
      返回

      官方微信,欢迎关注