高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于K-均值聚类和传统递归最小二乘法的高光谱图像无损压缩

高放 孙长建 邵庆龙 郭树旭

高放, 孙长建, 邵庆龙, 郭树旭. 基于K-均值聚类和传统递归最小二乘法的高光谱图像无损压缩[J]. 电子与信息学报, 2016, 38(11): 2709-2714. doi: 10.11999/JEIT151439
引用本文: 高放, 孙长建, 邵庆龙, 郭树旭. 基于K-均值聚类和传统递归最小二乘法的高光谱图像无损压缩[J]. 电子与信息学报, 2016, 38(11): 2709-2714. doi: 10.11999/JEIT151439
GAO Fang, SUN Changjian, SHAO Qinglong, GUO Shuxu. Lossless Compression of Hyperspectral Images Using K-means Clustering and Conventional Recursive Least-squares Predictor[J]. Journal of Electronics and Information Technology, 2016, 38(11): 2709-2714. doi: 10.11999/JEIT151439
Citation: GAO Fang, SUN Changjian, SHAO Qinglong, GUO Shuxu. Lossless Compression of Hyperspectral Images Using K-means Clustering and Conventional Recursive Least-squares Predictor[J]. Journal of Electronics and Information Technology, 2016, 38(11): 2709-2714. doi: 10.11999/JEIT151439

基于K-均值聚类和传统递归最小二乘法的高光谱图像无损压缩

doi: 10.11999/JEIT151439
基金项目: 

国家自然科学基金(41101419)

Lossless Compression of Hyperspectral Images Using K-means Clustering and Conventional Recursive Least-squares Predictor

Funds: 

The National Natural Science Foundation of China (41101419)

  • 计量
    • 文章访问数:  893
    • HTML全文浏览量:  65
    • PDF下载量:  626
    • 被引次数: 0
    出版历程
    • 收稿日期:  2015-12-22
    • 修回日期:  2016-04-08
    • 刊出日期:  2016-11-19

    目录

      /

      返回文章
      返回

      官方微信,欢迎关注