高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太赫兹合成孔径雷达成像运动补偿算法

张群英 江兆凤 李超 吴世有 方广有

张群英, 江兆凤, 李超, 吴世有, 方广有. 太赫兹合成孔径雷达成像运动补偿算法[J]. 电子与信息学报, 2017, 39(1): 129-137. doi: 10.11999/JEIT160201
引用本文: 张群英, 江兆凤, 李超, 吴世有, 方广有. 太赫兹合成孔径雷达成像运动补偿算法[J]. 电子与信息学报, 2017, 39(1): 129-137. doi: 10.11999/JEIT160201
ZHANG Qunying, JIANG Zhaofeng, LI Chao, WU Shiyou, FANG Guangyou. Motion Compensation Imaging Algorithm of TeraHertz Synthetic Aperture Radar[J]. Journal of Electronics and Information Technology, 2017, 39(1): 129-137. doi: 10.11999/JEIT160201
Citation: ZHANG Qunying, JIANG Zhaofeng, LI Chao, WU Shiyou, FANG Guangyou. Motion Compensation Imaging Algorithm of TeraHertz Synthetic Aperture Radar[J]. Journal of Electronics and Information Technology, 2017, 39(1): 129-137. doi: 10.11999/JEIT160201

太赫兹合成孔径雷达成像运动补偿算法

doi: 10.11999/JEIT160201
基金项目: 

国家高技术研究发展计划(2015AA8125021)

Motion Compensation Imaging Algorithm of TeraHertz Synthetic Aperture Radar

Funds: 

The National High Technology Research and Development Program of China (2015AA8125021)

  • 摘要: 合成孔径雷达(SAR)成像理论分析和工程经验表明当雷达平台的运动误差幅度达到亚波长量级时,会影响图像的聚焦质量。相对传统微波SAR,太赫兹合成孔径雷达(THz-SAR)工作在波长更短的太赫兹频段,对搭载雷达平台的稳定性要求更苛刻,需要达到微米级的控制和测量精度,目前的平台控制和测量技术还不能满足要求。该文提出一种基于回波数据的THz-SAR成像运动补偿算法,通过惯性测量单元输出的姿态信息完成由运动误差引起的距离徙动的校正,结合天线方向图和粗聚焦图像中特显点的最大幅值估计最优位置并构建理想回波。利用实际回波和理想回波数据提取由平台运动误差引起回波的相位误差并进行补偿,有效地实现了THz-SAR高分辨率成像。采用中心频率0.2 THz的SAR系统进行室外车载实验,对目标进行2维高分辨成像,得到角反射器和金属条的SAR图像。实验结果验证了所提运动补偿算法的正确性和有效性。
  • [1] 张存林, 张岩, 等. 太赫兹感测与成像[M]. 北京: 国防工业出版社, 2008: 160-164.
    [2] ZHANG Cunlin, ZHANG Yan, et al. Terahertz Sensing and Imaging[M]. Beijing: National Defense Industry Press, 2008: 160-164.
    [3] 徐政五. 基于太赫兹雷达的人体心跳和微动特征检测方法研究[D]. [博士论文], 电子科技大学, 2014.
    [4] XU Zhengwu. The human heartbeat and micro-feature detection based on the THz radar[D]. [Ph.D. dissertation], University of Electronic Science and Technology of China, 2014.
    [5] WAHAIA F, KASALYNAS I, VENCKEVICIUS R, et al. Terahertz absorption and reflection imaging of carcinoma- affected colon tissues embedded in paraffin[J]. Journal of Molecular Structure, 2015, 1107: 214-219. doi: 10.1016/j. molstruc.2015.11.048.
    [6] BOWMAN T C, El-SHENAWEE M, and CAMPBELL L K. Terahertz imaging of excised breast tumor tissue on paraffin sections[J]. IEEE Transactions on Antennas Propagation, 2015, 63(5): 2088-2097. doi:  10.1109/TAP.2015.2406893.
    [7] ANDERSON J P, SHAPIRO M A, TEMKIN R J, et al. Studies of the 1.5-MW 110-GHz gyrotron experiment[J]. IEEE Transactions on Plasma Science, 2004, 32(3): 877-883. doi:  10.1109/TPS.2004.828813.
    [8] TOUSI Y and AFSHARI E. A high-power and scalable 2-D phased array for terahertz CMOS integrated systems[J]. IEEE Journal of Solid-State Circuits, 2015, 50(2): 597-609. doi:  10.1109/JSSC.2014.2375324.
    [9] PHILIPP M, GRAF U U, WAGNER-GENTNER A, et al. Compact 1.9 THz BWO local-oscillator for the GREAT heterodyne receiver[J]. Infrared Physics Technology, 2007, 51(1): 54-59. doi:  10.1016/j.infrared.2006.10.034.
    [10] VENDIK I B, VENDIK O G, ODIT M A, et al. Tunable metamaterials for controlling THz radiation[J]. IEEE Transactions on Terahertz Science Technology, 2012, 2(5): 538-549. doi:  10.1109/TTHZ.2012.2209878.
    [11] GOYETTE T M, DICKINSON J C, WALDMAN J, et al. A 1.56 THz compact radar range for W-Band imagery of scale-model tactical targets[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2000, 4053: 615-622. doi:  10.1117/12.396372.
    [12] DENGLER R J, COOPER K B, CHATTOPADHYAY G, et al. 600 GHz imaging radar with 2 cm range resolution[C]. IEEE MTT-S International Microwave Symposium, Honolulu, Hawaii, USA, 2007: 1371-1374. doi: 10.1109/ MWSYM.2007.380468.
    [13] GILL J, LEE C, CHATTOPADHYAY G, et al. Array technology for terahertz imaging[C]. Passive and Active Millimeter-Wave Imaging XV, Baltimore, Maryland, USA, 2012: 836202. doi:  10.1117/12.920497.
    [14] 成彬彬, 江舸, 陈鹏, 等. 0.67 THz高分辨力成像雷达[J]. 太赫兹科学与电子信息学报, 2013, 11(1): 7-11.
    [15] CHENG Binbin, JIANG Ge, CHEN Peng, et al. 0.67 THz high resolution imaging radar[J]. Journal of Terahertz Science and Electronic Information Technology, 2013, 11(1): 7-11. doi:  10.3788/HPLPB20132506.1577.
    [16] GU S, LI C, GAO X, et al. Three-dimensional image reconstruction of targets under the illumination of terahertz Gaussian beam-theory and experiment[J]. IEEE Transactions on Geoscience Remote Sensing, 2013, 51(4): 2241-2249. doi:  10.1109/TGRS.2012.2209892.
    [17] 蔡英武, 杨陈, 曾耿华, 等. 太赫兹极高分辨力雷达成像试验研究[J]. 强激光与粒子束, 2012, 24(1): 7-9. doi: 10.3788/ HPLPB20122401.0007.
    [18] CAI Yingwu, YANG Chen, ZENG Genghua, et al. Experimental research on high resolution terahertz radar imaging[J]. High Power Laser and Particle Beams, 2012, 24(1): 7-9. doi:  10.3788/HPLPB20122401.0007.
    [19] 许景周, 张希成. 太赫兹科学技术和应用[M]. 北京: 北京大学出版社, 2007: 80-86.
    [20] XU Jingzhou and ZHANG Xicheng. Terahertz Science Technology and Applications[M]. Beijing: Peking University Press, 2007: 80-86.
    [21] ZHANG B, PI Y, and LI J. Terahertz imaging radar with inverse aperture synthesis techniques: System structure, signal processing and experiment results[J]. IEEE Sensors Journal, 2015, 15(1): 290-299. doi: 10.1109/JSEN.2014. 2342495.
    [22] 林华. 无人机载太赫兹合成孔径雷达成像分析与仿真[J]. 信息与电子工程, 2010, 8(4): 373-377.
    [23] LIN Hua. Analysis and simulation of UAV terahertz wave synthetic aperture radar imaging[J]. Information and Electronic Engineering, 2010, 8(4): 373-377.
    [24] 赵雨露, 张群英, 李超, 等. 视频合成孔径雷达振动误差分析及补偿方案研究[J]. 雷达学报, 2015, 4(2): 230-239. doi: 10. 12000/JR14153.
    [25] ZHAO Yulu, ZHANG Qunying, LI Chao, et al. Vibration error analysis and motion compensation of video synthetic aperture radar[J]. Journal of Radars, 2015, 4(2): 230-239. doi: 10.12000 /JR14153.
    [26] 安道祥. 高分辨SAR成像处理研究[D]. [博士论文], 国防科学技术大学研究生院, 2011.
    [27] AN Daoxiang. Study on the imaging techniques for high resolution SAR systems[D]. [Ph.D. dissertation], Graduate School of National University of Defense Technology, 2011.
  • [1] 吴世有, 高航, 李超, 张群英, 方广有.  太赫兹MIMO弧形阵列方位向成像算法研究, 电子与信息学报. doi: 10.11999/JEIT170630
    [2] 基于高速数字相关器的太赫兹干涉仪系统研究, 电子与信息学报. doi: 10.11999/JEIT150841
    [3] 程志华, 谢拥军, 马晓东, 毛煜茹, 毕博.  介质目标的太赫兹波近场散射特性计算, 电子与信息学报. doi: 10.11999/JEIT140807
    [4] 蒋成龙, 张冰尘, 王正道, 洪文.  基于复数信息传递的结构稀疏宽角合成孔径雷达成像算法, 电子与信息学报. doi: 10.11999/JEIT141300
    [5] 李震宇, 梁毅, 邢孟道, 保铮.  弹载合成孔径雷达大斜视子孔径频域相位滤波成像算法, 电子与信息学报. doi: 10.11999/JEIT140618
    [6] 丁振宇, 谭维贤, 王彦平, 洪文, 吴一戎.  平台运动测量误差对阵列天线合成孔径雷达三维成像影响分析, 电子与信息学报. doi: 10.11999/JEIT141106
    [7] 程志华, 谢拥军, 樊君.  复杂目标的太赫兹波近场RCS快速计算, 电子与信息学报. doi: 10.3724/SP.J.1146.2013.01473
    [8] 胡程, 周超.  前向散射阴影逆合成孔径雷达成像误差分析, 电子与信息学报. doi: 10.3724/SP.J.1146.2012.01122
    [9] 杜亦佳, 鲍景富, 赵兴海, 郑英彬.  太赫兹微加工波导滤波器, 电子与信息学报. doi: 10.3724/SP.J.1146.2011.00832
    [10] 王明红, 薛谦忠, 刘濮鲲.  太赫兹真空电子器件的研究现状及其发展评述, 电子与信息学报. doi: 10.3724/SP.J.1146.2007.00858
    [11] 张升康, 杨汝良.  基于二次距离压缩的双基地合成孔径雷达斜视成像算法, 电子与信息学报. doi: 10.3724/SP.J.1146.2006.02012
    [12] 陈琦, 杨汝良.  机载前视合成孔径雷达Chirp Scaling成像算法研究, 电子与信息学报. doi: 10.3724/SP.J.1146.2006.00747
    [13] 吕继宇, 雷宏, 阴和俊.  CS算法结合COAA算法提高机载合成孔径雷达成像质量, 电子与信息学报. doi: 10.3724/SP.J.1146.2005.01454
    [14] 李勇, 朱岱寅, 朱兆达.  机载合成孔径雷达大斜视高分辨率重叠子孔径成像算法研究, 电子与信息学报.
    [15] 朱振波, 汤子跃, 蒋兴舟.  机载双站合成孔径雷达Chirp Scaling成像算法, 电子与信息学报.
    [16] 盛蔚, 毛士艺.  一种合成孔径雷达对地面运动目标成像和精确定位的算法, 电子与信息学报.
    [17] 梁淮宁, 王建国, 黄顺吉.  快速搜索算法与极化合成孔径雷达三维成像, 电子与信息学报.
    [18] 黄永红, 毛士艺.  星载合成孔径雷达(SAR)成像处理快速近似算法, 电子与信息学报.
    [19] 孟宪德, 曹志道, 宿富林.  逆合成孔径雷达的系统补偿, 电子与信息学报.
    [20] 毛引芳.  合成孔径雷达中多普勒频移误差的光学补偿, 电子与信息学报.
  • 加载中
  • 计量
    • 文章访问数:  866
    • HTML全文浏览量:  70
    • PDF下载量:  618
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-03-03
    • 修回日期:  2016-07-01
    • 刊出日期:  2017-01-19

    目录

      /

      返回文章
      返回

      官方微信,欢迎关注