高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人工表面等离激元及其在微波频段的应用

汤文轩 张浩驰 崔铁军

汤文轩, 张浩驰, 崔铁军. 人工表面等离激元及其在微波频段的应用[J]. 电子与信息学报, 2017, 39(1): 231-239. doi: 10.11999/JEIT160692
引用本文: 汤文轩, 张浩驰, 崔铁军. 人工表面等离激元及其在微波频段的应用[J]. 电子与信息学报, 2017, 39(1): 231-239. doi: 10.11999/JEIT160692
TANG Wenxuan, ZHANG Haochi, CUI Tiejun. Spoof Surface Plasmon Polariton and Its Applications to Microwave Frequencies[J]. Journal of Electronics and Information Technology, 2017, 39(1): 231-239. doi: 10.11999/JEIT160692
Citation: TANG Wenxuan, ZHANG Haochi, CUI Tiejun. Spoof Surface Plasmon Polariton and Its Applications to Microwave Frequencies[J]. Journal of Electronics and Information Technology, 2017, 39(1): 231-239. doi: 10.11999/JEIT160692

人工表面等离激元及其在微波频段的应用

doi: 10.11999/JEIT160692
基金项目: 

国家自然科学基金(61571117,61631007,61401089,61302018,61501112,61501117),国家仪器专项(2013YQ200647),111创新引智计划(111-2-05)

Spoof Surface Plasmon Polariton and Its Applications to Microwave Frequencies

Funds: 

The National Natural Science Foundation of China (61571117, 61631007, 61401089, 61302018, 61501112, 61501117), The National Instrumentation Program (2013YQ- 200647), The 111 Project (111-2-05)

  • 摘要: 在微波频段采用超薄锯齿状金属条带可实现人工表面等离激元,将电磁场能量束缚在亚波长区域内传播。该文分析了人工表面等离激元特有的高束缚、低损耗、可调控等优点,研究了人工表面等离激元波导作为一种新型的高性能传输线在微波电路中的应用价值和发展现状,探讨了这一技术的发展方向和前景。
  • [1] BARNES W L, DEREUX A, and EBBESEN T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424: 824-830. doi:  10.1038/nature01937.
    [2] MAIER S A. Plasmonics: Fundamentals and Applications[M]. New York: Springer, 2007, Chapter 1.
    [3] LIU N, WEN F, ZHAO Y, et al. Individual nanoantennas loaded with three-dimensional optical nanocircuits[J]. Nano Letters, 2013, 13(1): 142-147. doi:  10.1021/nl303689c.
    [4] PENDRY J B, MARTIN-MORENO L, and GARCIA- VIDAL F J. Mimicking surface plasmons with structured surfaces[J]. Science, 2004, 305(5685): 847-848. doi: 10.1126/ science.1098999.
    [5] A. P. HIBBINS A P, EVANS B R, and SAMBLES J R. Experimental verification of designer surface plasmons[J]. Science, 2005, 308(5722): 670-672. doi: 10.1126/science. 1109043.
    [6] GARCIA-VIDAL F J, MARTIN-MORENO L, and PENDRY J B. Surfaces with holes in them: new plasmonic metamaterials[J]. Journal of Optics A: Pure and Applied Optics, 2005, 7(2): S97-S101. doi: 10.1088/1464-4258/7/2/ 013.
    [7] MAIER S A, ANDREWS S R, MARTIN-MORENO L, et al. Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires[J]. Physical Review Letters, 2006, 97(17): 176805(1-4). doi: 10.1103/ PhysRevLett.97.176805.
    [8] CHEN Yongyao, SONG Zhenming, LI Yanfeng, et al. Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves[J]. Optics Express, 2006, 14(26): 13021-13029. doi:  10.1364/OE.14.013021.
    [9] WILLAMS C R, ANDREW S R, MAIER S A, et al. Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces[J]. Nature Photonics, 2008, 2(3): 175-179. doi:  10.1038/nphoton.2007.301.
    [10] GAN Qiaoqiang, FU Zhan, DING Yujie, et al. Ultrawide- bandwidth slow-light system based on THz plasmonic graded metallic grating structures[J]. Physical Review Letters, 2008, 100(25): 256803(1-4). doi:  10.1103/PhysRevLett.100.256803.
    [11] MORENO E, RODRIGO S G, BOZHEVOLNYI S I, et al. Guiding and focusing of electromagnetic fields with wedge plasmon polaritons[J]. Physical Review Letters, 2008, 100(2): 023901(1-4). doi:  10.1103/PhysRevLett.100.023901.
    [12] NAGPAL P, LINQUIST N C, Oh S H, et al. Ultrasmooth patterned metals for plasmonics and metamaterials[J]. Science, 2009, 325(5940): 594-597. doi: 10.1126/science. 1174655.
    [13] ZHOU Yongjin, JIANG Quan, and CUI Tiejun. Bidirectional bending splitter of designer surface plasmons[J]. Applied Physics Letters, 2011, 99(11): 111904(1-4). doi: 10.1063/ 1.3639277.
    [14] LOCKYEAR M J, HIBBINS A P, and SAMBLES J R. Microwave surface-plasmon-like modes on thin metamaterials[J]. Physical Review Letters, 2009, 102(7): 073901(1-4). doi:  10.1103/PhysRevLett.102.073901.
    [15] SHEN Xiaopeng, CUI Tiejun, MARTIN-CANO D, et al. Conformal surface plasmons propagating on ultrathin and flexible films[J]. Proceedings of the National Academy of Sciences of the USA, 2013, 110(1): 40-45. doi: 10.1073/pnas. 1210417110.
    [16] WU J J. Subwavelength microwave guiding by periodically corrugated strip line[J]. Progress In Electromagnetics Research, 2010, 104: 113-123. doi:  10.2528/PIER10021202.
    [17] LIU Xiaoyong, FENG Yijun, ZHU Bo, et al. High-order modes of spoof surface plasmonic wave transmission on thin metal film structure[J]. Optics Express, 2013, 21(23): 3155-3165. doi:  10.1364/OE.21.031155.
    [18] ZHANG Wenxuan, ZHU Guiqiang, SUN Liguo, et al. Trapping of surface plasmon wave through gradient corrugated strip with underlayer ground and manipulating its propagation[J]. Applied Physics Letters, 2015, 106(2): 021104(1-6). doi:  10.1063/1.4905675.
    [19] LIANG Yuan, YU Hao, ZHANG Haochi, et al. On-chip sub-terahertz surface plasmon polariton transmission lines in CMOS[J]. Scientific Reports, 2015, 5: 14853(1-13). doi:  10.1038/srep14853.
    [20] ZHANG Haochi, ZHANG Qian, LIU Junfeng, et al. Smaller-loss planar SPP transmission line than conventional microstrip in microwave frequencies[J]. Scientific Reports, 2016, 6: 23396(1-10). doi:  10.1038/srep23396.
    [21] SHEN Xiaopeng, and CUI Tiejun. Planar plasmonic metamaterial on a thin film with nearly zero thickness[J]. Applied Physics Letters, 2013, 102(21): 211909(1-4). doi:  10.1063/1.4808350.
    [22] WU J J, HOU D J, LIU K X, et al. Differential microstrip lines with reduced crosstalk and common mode effect based on spoof surface plasmon polaritons[J]. Optics Express, 2014, 22(22): 26777-26787. doi:  10.1364/OE.22.026777.
    [23] ZHANG Haochi, CUI Tiejun, ZHANG Qian, et al. Breaking the challenge of signal integrity using time-domain spoof surface plasmon polaritons[J]. ACS Photonics, 2015, 2(9): 1333-1340. doi:  10.1021/acsphotonics.5b00316.
    [24] PAN Baicao, ZHAO Jie, LIAO Zhen, et al. Multi-layer topological transmissions of spoof surface plasmon polaritons[J]. Scientific Reports, 2016, 6: 22702(1-9). doi:  10.1038/srep22702.
    [25] WANG K L and MITTLEMAN D M.Metal wires for terahertz wave guiding[J]. Nature, 2004, 432(7015): 376-379. doi:  10.1038/nature03040.
    [26] WANG K L and MITTLEMAN D M. Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range[J]. Physical Review Letters, 2006, 96(15): 157401(1-4). doi:  10.1103/PhysRevLett.96.157401.
    [27] SUN Shulin, HE Qiong, XIAO Shiyi, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 2012, 11(5): 426-431. doi:  10.1038/NMAT3292.
    [28] WU Chenjun, CHENG Yongzhi, WANG Wenying, et al. Ultra-thin and polarization-independent phase gradient metasurface for high-efficiency spoof surface-plasmon- polariton coupling[J]. Applied Physics Express, 2015, 8(12): 122001(1-4). doi:  10.7567/APEX.8.122001.
    [29] SUN Wujiong, HE Qiong, SUN Shulin, et al. High-efficiency surface plasmon meta-couplers: Concept and microwave- regime realizations[J]. Light-Science and Applications, 2016, 5: e16003(1-6). doi:  10.1038/lsa.2016.3.
    [30] MA Huifeng, SHEN Xiaopeng, CHENG Qiang, et al. Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons[J]. Laser and Photonics Reviews, 2014, 8(1): 146-151. doi:  10.1002/lpor.201300118.
    [31] LIU Liangliang, LI Zhuo, XU Bingzheng, et al. High- efficiency transition between rectangular waveguide and domino plasmonic waveguide[J]. AIP Advances, 2015, 5(2): 027105(1-9). doi:  10.1063/1.4907879.
    [32] GAO Xi, ZHOU Liang, YU Xingyang, et al. Ultra-wideband surface plasmonic Y-splitter[J]. Optics Express, 2015, 23(18): 23270-23277. doi:  10.1364/OE.23.023270.
    [33] XU Junjun, YIN Jiayuan, ZHANG Haochi, et al. Compact feeding network for array radiations of spoof surface plasmon polaritons[J]. Scientific Reports, 2016, 6: 22692(1-7). doi:  10.1038/srep22692.
    [34] ZHU Zhihong, GARCIA-ORTIZ C E, HAN Zhanghua, et al. Compact and broadband directional coupling and demultiplexing in dielectric-loaded surface plasmon polariton waveguides based on the multimode interference effect[J]. Applied Physics Letters, 2013, 103(6): 061108(1-5). doi:  10.1063/1.4817860.
    [35] XU Bingzheng, LI Zhuo, LIU Liangliang, et al. Tunable band-notched coplanar waveguide based on localized spoof surface plasmons[J]. Optics Letters, 2015, 40(20): 4683-4686. doi:  10.1364/OL.40.004683.
    [36] GAO Xi, ZHOU Liang, LIAO Zhen, et al. An ultra-wideband surface plasmonic filter in microwave frequency[J]. Applied Physics Letters, 2014, 104(19): 191603(1-5). doi: 10.1063/ 1.4876962.
    [37] PAN Baicao, LIAO Zhen, ZHAO Jie, et al. Controlling rejections of spoof surface plasmon polaritons using metamaterial particles[J]. Optics Express, 2014, 22(11): 13940-13950. doi:  10.1364/OE.22.013940.
    [38] YIN Jiayuan, REN Jian, ZHANG Haochi, et al. Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure[J]. Scientific Reports, 2014, 5: 8165(1-5). doi:  10.1038/srep08165.
    [39] ZHANG Qian, ZHANG Haochi, WU Han, et al. A hybrid circuit for spoof surface plasmons and spatial waveguide modes to reach controllable band-pass filters[J]. Scientific Reports, 2015, 5: 16531(1-9). doi:  10.1038/srep16531.
    [40] LIU Xiaoyong, FENG Yijun, CHEN Ke, et al. Planar surface plasmonic waveguide devices based on symmetric corrugated thin film structures[J]. Optics Express, 2014, 22(17): 20107-20116. doi:  10.1364/OE.22.020107.
    [41] GAO Xi, SHI Jinhui, SHEN Xiaopeng, et al. Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies[J]. Applied Physics Letters, 2013, 102(15): 151912(1-4). doi: 10.1063/ 1.4802739.
    [42] BAI Xue, QU Shiwei, and YI Huan. Applications of spoof planar plasmonic waveguide to frequency-scanning circularly polarized patch array[J]. Journal of Physics D-Applied Physics, 2014, 47(32): 325101(1-7). doi: 10.1088/0022-3727/ 47/32/325101.
    [43] WU Jinjei, WU Chienjang, SHEN Jianqi, et al. Properties of transmission and leaky modes in a plasmonic waveguide constructed by periodic subwavelength metallic hollow blocks [J]. Scientific Reports, 2015, 5: 14461(1-10). doi: 10.1038/ srep14461.
    [44] CAI Bengeng, LI Yunbo, MA Huifeng, et al. Leaky-wave radiations by modulating surface impedance on subwavelength corrugated metal structures[J]. Scientific Reports, 2016, 6: 23974(1-7). doi:  10.1038/srep23974.
    [45] WAN Xiang, YIN Jiayuan, ZHANG Haochi, et al. Dynamic excitation of spoof surface plasmon polaritons[J]. Applied Physics Letters, 214, 105(8): 083502(1-4). doi: 10.1063/ 1.4894219.
    [46] XU Jie, ZHANG Haochi, TANG Wenxuan, et al. Transmission-spectrum-controllable spoof surface plasmon polaritons using tunable metamaterial particles[J]. Applied Physics Letters, 2016, 108(19): 191906(1-5). doi: 10.1063/1. 4950701.
    [47] ZHANG Haochi, LIU Shuo, SHEN Xiaopeng, et al. Broadband amplification of spoof surface plasmon polaritons at microwave frequencies[J]. Laser and Photonics Reviews, 2015, 9(1): 83-90. doi:  10.1002/lpor.201400131.
    [48] ZHANG Haochi, FAN Yifeng, GUO Jian, et al. Second- harmonic generation of spoof surface plasmon polaritons using nonlinear plasmonic metamaterials[J]. ACS Photonics, 2016, 3(1): 139-146. doi:  10.1021/acsphotonics.5b00580.
  • [1] 王友成, 董明宇, 张锋, 叶盛波, 纪奕才, 方广有, 张晓娟.  渐变槽天线端射特性优化设计, 电子与信息学报. doi: 10.11999/JEIT160203
    [2] 赵恒凯, 付新涛.  轨道交通单竖井隧道环境的空气湍流折射率结构常数模型及分析, 电子与信息学报. doi: 10.11999/JEIT160632
    [3] 李磊, 吴振森, 林乐科, 赵振维, 张守宝, 郭相明.  海上对流层微波超视距传播与海洋大气环境特性相关性研究, 电子与信息学报. doi: 10.11999/JEIT150210
    [4] 郁滨, 方哲, 周长林.  并行传输线共模泄漏的等效场-线耦合数值模型, 电子与信息学报. doi: 10.11999/JEIT140210
    [5] 王为, 周东明, 刘培国, 覃宇建.  端接任意负载传输线的分步CN-FDTD分析方法, 电子与信息学报. doi: 10.3724/SP.J.1146.2012.00658
    [6] 闫旭, 李玉山, 高崧, 曲咏哲, 丁同浩.  基于特征线方法的无源传输线模型, 电子与信息学报. doi: 10.3724/SP.J.1146.2010.00685
    [7] 张锋, 刘小军, 纪奕才, 方广有, 巨汉基.  一种用于浅层探冰雷达的改进型宽带小型化TSA天线, 电子与信息学报. doi: 10.3724/SP.J.1146.2010.01136
    [8] 徐军, 吕英华.  多导体传输线电感矩阵的直接算法, 电子与信息学报. doi: 10.3724/SP.J.1146.2009.00739
    [9] 朱轶智, 张晓娟, 方广有.  基于开路T型结构的小型化超宽阻带滤波器设计, 电子与信息学报. doi: 10.3724/SP.J.1146.2009.01021
    [10] 张志刚, 柳超, 王跃平.  小型化高效率的短波宽带天线, 电子与信息学报. doi: 10.3724/SP.J.1146.2007.00044
    [11] 袁伟良, 梁昌洪.  信号时域提取方法结合时域有限差分法分析传输线馈电的微波元件, 电子与信息学报.
    [12] 文舸一.  微波功率传输的理论研究, 电子与信息学报.
    [13] 戚颂新, 丘水生.  高速集成传输线特性参量的快速提取, 电子与信息学报.
    [14] 任伟, 林为干.  特种截面传输线的分析, 电子与信息学报.
    [15] 蒲国胜, 廖承恩.  微带传输线特性的数值分析, 电子与信息学报.
    [16] 戎敖生, 李嗣范.  屏蔽平面传输线的色散特性分析, 电子与信息学报.
    [17] 吴晓东, 林为干.  微带传输线的特性研究, 电子与信息学报.
    [18] 赵仲宏, 李悌兴, 夏能樵, 张奇, 郑宝鸿, 苏耀文, 吴萌, 汪青.  1 MV 6 Blumlein传输线的研究, 电子与信息学报.
    [19] 周文表.  用边界元法计算任意截面TEM波传输线的特性, 电子与信息学报.
    [20] 史长青, 张俊荣.  耦合微带传输线特性解析式, 电子与信息学报.
  • 加载中
  • 计量
    • 文章访问数:  812
    • HTML全文浏览量:  116
    • PDF下载量:  859
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-07-04
    • 修回日期:  2016-09-20
    • 刊出日期:  2017-01-19

    目录

      /

      返回文章
      返回

      官方微信,欢迎关注