高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于量子粒子群优化的短波相控阵天线的激励优化研究

范启蒙 尹成友 廖飞龙

范启蒙, 尹成友, 廖飞龙. 基于量子粒子群优化的短波相控阵天线的激励优化研究[J]. 电子与信息学报, 2017, 39(7): 1769-1773. doi: 10.11999/JEIT160819
引用本文: 范启蒙, 尹成友, 廖飞龙. 基于量子粒子群优化的短波相控阵天线的激励优化研究[J]. 电子与信息学报, 2017, 39(7): 1769-1773. doi: 10.11999/JEIT160819
FAN Qimeng, YIN Chengyou, LIAO Feilong. Analysis of Excitation Optimization of Short Wave Phased Array Based on Quantum-behaved Particle Swarm Optimization[J]. Journal of Electronics and Information Technology, 2017, 39(7): 1769-1773. doi: 10.11999/JEIT160819
Citation: FAN Qimeng, YIN Chengyou, LIAO Feilong. Analysis of Excitation Optimization of Short Wave Phased Array Based on Quantum-behaved Particle Swarm Optimization[J]. Journal of Electronics and Information Technology, 2017, 39(7): 1769-1773. doi: 10.11999/JEIT160819

基于量子粒子群优化的短波相控阵天线的激励优化研究

doi: 10.11999/JEIT160819
基金项目: 

安徽省自然科学基金(1408085QF121)

Analysis of Excitation Optimization of Short Wave Phased Array Based on Quantum-behaved Particle Swarm Optimization

Funds: 

The Natural Science Foundation of Anhui Province (1408085QF121)

  • 摘要: 为加强短波装备远距离通信和电子对抗的干扰能力,须提高近地架设的宽带短波相控阵天线的性能,该文首先利用矩量法建立分析天线阵列的基本框架,然后再结合空域格林函数将天线剖分子模的辐射场分解成自由空间部分和含索末菲积分的部分,前者可以直接得到闭式表达,后者采用二级离散复镜像方法得到近似解,经过处理,阻抗矩阵填充速度极大提高。然后基于阻抗矩阵,结合网络理论并利用量子粒子群优化方法(QPSO)对阵列的激励相位进行优化,以控制波束指向和提高增益,能够在电离层参数随时空变化情况下,灵活地完成点对点天波传播,有较高的实际应用价值。
  • [1] MICHASKI K A and ZHENG Dalian. Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media, part I and part II[J]. IEEE Transactions on Antennas and Propagation, 1990, 38(3): 335-352.
    [2] SARSHENAS M and FIROUZEH Z H. A robust hybrid Taguchi-gradient optimization method for the calculation of analytical Green,s functions of microstrip structures[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 1366-1368. doi:  10.1109/LAWP.2015.2407191.
    [3] WU Biyi and SHENG Xinqing. A complex image deduction technique using genetic algorithm for the MoM solution of half-space MPIE[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(8): 3727-3731. doi: 10.1109/TAP.2015. 2434418.
    [4] KARABULUT E P, ERTURK V B, ALATAN L, et al. A novel approach for the efficient computation of 1-D and 2-D summations[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(3): 1014-1022. doi: 10.1109/TAP.2016. 2521860.
    [5] LUO Wan, NIE Zaiping, and CHEN Y P. Efficient higher- order analysis of electromagnetic scattering by objects above, below, or straddling a half-space[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 332-335. doi: 10.1109 /LAWP.2015.2443874.
    [6] DYAB W M G, SARKAR T K, ABDALLAH M N, et al. Greens function using Schelkunoff integrals for horizontal electric dipoles over an imperfect ground plane[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(4): 1342-1355 doi:  10.1109/TAP.2016.2529639.
    [7] MICHASKI K A and MOSIG J R. The Sommerfeld halfspace problem redux: Alternative field representations, role of Zenneck and surface plasmon waves[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(12): 5777-5790. doi:  10.1109/TAP.2015.2489680.
    [8] MICHASKI K A and MOSIG J R. On the surface fields excited by a Hertzian dipole over a layered halfspace: From radio to optical wavelengths[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(12): 5741-5752. doi:  10.1109/TAP.2015.2484422.
    [9] 焦程鹏, 贺秀莲, 龚书喜. 离散复镜像方法中的积分路径与展开函数的研究[J]. 电子与信息学报, 2008, 30(3): 734-737.
    [10] JIAO Chengpeng, HE Xiulian, and GONG Shuxi. On the integration path and expansion function of the discrete complex image method[J]. Journal of Electronics Information Technology, 2008, 30(3): 734-737.
    [11] AKSUN M I. A Robust approach for the derivation of closed-form Greens function[J]. IEEE Transactions on Microwave Theory and Techniques, 1996, 44(5): 651-658. doi:  10.1109/22.493917.
    [12] AKSUN M I and DURAL G. Clarification of issues on the closed-form Green,s function in stratified media[J]. IEEE Transactions on Antennas and Propagation, 2005, 53(11): 3644-3653. doi:  10.1109/TAP.2005.858571.
    [13] LIU Jiazhou, ZHAO Zhiqin, YUAN Mengqing, et al. The filter diagonalization method in antenna array optimization for pattern synthesis[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(12): 6123-6130. doi: 10.1109/TAP.2014. 2364818.
    [14] ROCCA P, ANSELMI N, and MASSA A. Optimal synthesis of robust beamformer weights exploiting interval analysis and convex optimization[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(7): 3603-3612. doi: 10.1109/TAP.2014. 2318071.
    [15] FUCHS B. Application of convex relaxation to array synthesis problem[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(2): 634-640. doi: 10.1109/TAP.2013. 2290797.
    [16] ELKAMCHOUCHI H M and HASSAN M M. Array pattern synthesis approach using a genetic algorithm[J]. IET Microwaves, Antennas Propagation, 2014, 8(14): 1236-1240. doi:  10.1049/iet-map.2013.0718.
    [17] SUN Bin, REN Bo, LIU Chunheng, et al. Experimental investigation on the synthesis of scanning beam pattern with antenna selection for conformal array[J]. IET Microwaves, Antennas Propagation, 2016, 10(9): 969-975. doi: 10.1049/ iet-map.2015.0782.
    [18] HU Guanzhong, YANG Shiyou, LI Yunling, et al. A hybridized vector optimal algorithm for multi-objective optimal designs of electromagnetic devices[J]. IEEE Transactions on Magnetics, 2016, 52(3): 1-4. doi: 10.1109/ TMAG.2015.2493181.
    [19] 孙俊. 量子行为粒子群优化算法研究[D]. [博士论文], 江南大学, 2009: 30-35.
    [20] SUN Jun. Particle swarm optimization with particles having quantum behavior[D]. [Ph.D. dissertation], Jiangnan University, 2009: 30-35.
    [21] RICHMOND J H and GEARY N H. Mutual impedance of nonplanar-skew sinusoidal dipoles[J]. IEEE Transactions on Antennas and Propagation, 1975, 23(3): 412-414. doi: 10.1109 /TAP.1975.1141083.
    [22] 赵菲. 共形相控阵天线分析综合技术与实验研究[D]. [博士论文], 国防科学技术大学, 2012.
    [23] ZHAO Fei. Analysis and synthesis study of conformal phased antenna array and experiment[D]. [Ph.D. dissertation], National University of Defense Technology, 2012.
    [24] 哈林登著. 王尔杰, 等译. 计算电磁场的矩量法[M]. 北京: 国防工业出版社, 1981: 222-227.
    [25] Harrington R F. Field Computation by Moment Methods[M]. Beijing: National Defense Industry Press, 1981: 222-227.
  • [1] 陈岩, 林中朝, 张玉, 赵勋旺.  大规模并行高阶矩量法的容错算法研究, 电子与信息学报. doi: 10.11999/JEIT161308
    [2] 赵春晖, 郭蕴霆.  一种快速的基于稀疏表示和非下采样轮廓波变换的图像融合算法, 电子与信息学报. doi: 10.11999/JEIT150933
    [3] 刘起坤, 周东方, 邢锋, 雷雪, 余道杰.  基于迭代散射算法的柱体阵列散射场分析, 电子与信息学报. doi: 10.11999/JEIT150167
    [4] 李南京, 李元新, 胡楚锋.  球模式展开理论近远场变换及快速算法, 电子与信息学报. doi: 10.11999/JEIT150203
    [5] 王仲根, 孙玉发, 王国华.  应用改进的快速偶极子法和特征基函数法分析导体目标电磁散射特性, 电子与信息学报. doi: 10.3724/SP.J.1146.2013.00027
    [6] 汪丙南, 张帆, 向茂生.  基于混合域的SAR回波快速算法, 电子与信息学报. doi: 10.3724/SP.J.1146.2010.00555
    [7] 徐晓飞, 曹祥玉, 高军, 吴君辉, 郑秋容.  基于矩量法的电大目标RCS核外并行计算, 电子与信息学报. doi: 10.3724/SP.J.1146.2010.00519
    [8] 王兴, 龚书喜, 关莹, 吕政良, 马骥.  AIM结合渐近波形估计技术快速分析目标宽带电磁散射特性, 电子与信息学报. doi: 10.3724/SP.J.1146.2010.01404
    [9] 赵克明, 孙玉发.  一种应用于目标宽带RCS快速计算的高效预处理技术, 电子与信息学报. doi: 10.3724/SP.J.1146.2010.00756
    [10] 王绪存, 周以国.  矩形波导纵向缝隙的矩量法分析, 电子与信息学报. doi: 10.3724/SP.J.1146.2011.00397
    [11] 肖玮, 涂亚庆, 何丽.  DTFT频谱细化特性分析及其快速算法设计, 电子与信息学报. doi: 10.3724/SP.J.1146.2010.01118
    [12] 金勇, 黄建国, 张立杰.  短采样宽带信号方位估计快速算法, 电子与信息学报. doi: 10.3724/SP.J.1146.2007.00550
    [13] 丛琳, 焦李成, 沙宇恒.  正交免疫克隆粒子群多目标优化算法, 电子与信息学报. doi: 10.3724/SP.J.1146.2007.00566
    [14] 陈忠宽, 王生水, 柴舜连, 毛钧杰.  利用基于浮动模板的预修正快速傅里叶 变换方法快速求解三维介质体积分方程, 电子与信息学报. doi: 10.3724/SP.J.1146.2007.00652
    [15] 卢力, 施保昌, 王能超, 田金文, 柳健.  离散Walsh-Haar变换的快速算法, 电子与信息学报.
    [16] 童永承, 李国屏.  功能险象的简化快速算法研究, 电子与信息学报.
    [17] 张永军, 陈宗骘, 韩平.  幂迭代超分辨率快速算法, 电子与信息学报.
    [18] 鲍长春, 赵国谦, 戴逸松.  码激励线性预测语音编码快速算法和评价, 电子与信息学报.
    [19] 曾泳泓.  任意长度离散Hartley变换的快速算法, 电子与信息学报.
    [20] 杨先华, 章文勋.  全域基矩量法的一种快速算法, 电子与信息学报.
  • 加载中
  • 计量
    • 文章访问数:  433
    • HTML全文浏览量:  31
    • PDF下载量:  285
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-08-03
    • 修回日期:  2017-01-20
    • 刊出日期:  2017-07-19

    目录

      /

      返回文章
      返回

      官方微信,欢迎关注