高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于人类动力学的在线社交网络信息传播研究

李瑾颉 吴联仁 齐佳音 闫强

李瑾颉, 吴联仁, 齐佳音, 闫强. 基于人类动力学的在线社交网络信息传播研究[J]. 电子与信息学报, 2017, 39(4): 785-793. doi: 10.11999/JEIT160940
引用本文: 李瑾颉, 吴联仁, 齐佳音, 闫强. 基于人类动力学的在线社交网络信息传播研究[J]. 电子与信息学报, 2017, 39(4): 785-793. doi: 10.11999/JEIT160940
LI Jinjie, WU Lianren, QI Jiayin, YAN Qiang. Research on Information Dissemination in Online Social Network Based on Human Dynamics[J]. Journal of Electronics and Information Technology, 2017, 39(4): 785-793. doi: 10.11999/JEIT160940
Citation: LI Jinjie, WU Lianren, QI Jiayin, YAN Qiang. Research on Information Dissemination in Online Social Network Based on Human Dynamics[J]. Journal of Electronics and Information Technology, 2017, 39(4): 785-793. doi: 10.11999/JEIT160940

基于人类动力学的在线社交网络信息传播研究

doi: 10.11999/JEIT160940
基金项目: 

国家973计划项目(2013CB329604),国家自然科学基金(71601005, 71231002)

Research on Information Dissemination in Online Social Network Based on Human Dynamics

Funds: 

The National 973 Program of China (2013CB329604), The National Natural Science Foundation of China (71601005, 71231002)

  • 摘要: Web2.0时代,社交网络因其交互性和即时性,已成为人类社会中社会关系维系和信息传播的重要载体。因此,理解社交网络用户行为特征及其对在线信息传播的影响至关重要。该文从人类行为动力学视角出发,系统梳理了近年来社交网络用户行为的实证研究。其次,综述了社交网络信息传播中用户行为时间特征的实证研究。最后,对用户行为时间特征与在线社交网络信息传播的相互作用进行了总结和展望。
  • [1] 方滨兴, 贾焰, 韩毅. 社交网络分析核心科学问题, 研究现状及未来展望[J]. 中国科学院院刊, 2015, 30(2): 187-199. doi: 10. 16418/j.issn.1000-3045.2015.02.007.
    [2] FANG Binxing, JIA Yan, and HAN Yi. Social network analysis-key research problems, related work, and future prospects[J]. Bulletin of Chinese Academy of Sciences, 2015, 30(2): 187-199. doi:  10.16418/j.issn.1000-3045.2015.02.007.
    [3] 杨善林, 王佳佳, 代宝, 等. 在线社交网络用户行为研究现状与展望[J]. 中国科学院院刊, 2015, 30(2): 200-215. doi: 10.16418 /j.issn.1000-3045.2015.02.008.
    [4] YANG Shanlin, WANG Jiajia, DAI Bao, et al. State of the art in social network user behaviors and its future[J]. Bulletin of Chinese Academy of Sciences, 2015, 30(2): 200-215. doi:  10.16418/j.issn.1000-3045.2015.02.008.
    [5] DEZSO Z, ALMAAS E, LUKACS A, et al. Dynamics of information access on the web[J]. Physical Review E, 2006, 73(6): 066132. doi:  10.1103/PhysRevE.73.066132.
    [6] GONCALVES B and RAMASCO J J. Human dynamics revealed through Web analytics[J]. Physical Review E, 2008, 78(2): 026123. doi:  10.1103/PhysRevE.78.026123.
    [7] ZHAO Z D, XIA H, SHANG M S, et al. Empirical analysis on the human dynamics of a large-scale short message communication system[J]. Chinese Physics Letters, 2011, 28(6): 068901. doi:  10.1088/0256-307X/28/6/068901.
    [8] HU H B and HAN D Y. Empirical analysis of individual popularity and activity on an online music service system[J]. Physica A: Statistical Mechanics and Its Applications, 2008, 387(23): 5916-5921. doi: http: //dx.doi.org/10.1016/j.physa. 2008.06.018.
    [9] 周涛, 韩筱璞, 闫小勇, 等. 人类行为时空特性的统计力学[J]. 电子科技大学学报, 2013, 42(4): 481-540. doi: 10.3969/j.issn. 1001-0548.2013.04.001.
    [10] ZHOU Tao, HAN Xiaopu, YAN Xiaoyong, et al. Statistical mechanics on temporal and spatial activities of human[J]. Journal of University of Electronic Science and Technology of China, 2013, 42(4): 481-540. doi: 10.3969/j.issn.1001-0548. 2013.04.001.
    [11] BARABASI A L. The origin of bursts and heavy tails in human dynamics[J]. Nature, 2005(435): 207-211. doi:  10.1038/nature03459.
    [12] BROCKMANN D, HUFNAGEL L, and GEISEL T. The scaling laws of human travel[J]. Nature, 2006(439): 462-465. doi:  10.1038/nature04292.
    [13] WU Y, ZHOU C, XIAO J, et al. Evidence for a bimodal distribution in human communication[J]. Proceedings of the National Academy of Sciences, 2010, 107(44): 18803-18808. doi:  10.1073/pnas.1013140107.
    [14] WANG P, GONZALEZ M C, HIDALFO C A, et al. Understanding the spreading patterns of mobile phone viruses[J]. Science, 2009(324): 1071-1076. doi: 10.1126/ science.1167053.
    [15] DEVILLE P, SONG C, EAGLE N, et al. Scaling identity connects human mobility and social interactions[J]. Proceedings of the National Academy of Sciences, 2016, 113(26): 7047-7052. doi:  10.1073/pnas.1525443113.
    [16] 闫强, 吴联仁, 郑兰. 微博社区中用户行为特征及其机理研究[J]. 电子科技大学学报, 2013, 42(3): 328-333. doi: 10.3969/ j.issn.1001-0548.2013.03.002.
    [17] YAN Q, WU L R, and ZHENG L. Research on user behavior characters and mechanism in micro-blog communities[J]. Journal of University of Electronic Science and Technology of China, 2013, 42(3): 328-333. doi: 10.3969/j.issn.1001-0548. 2013.03.002.
    [18] CHEN G, HAN X, and WANG B. Multi-level scaling properties of instant-message communications[J]. Physics Procedia, 2010, 3(5): 1897-1905. doi: 10.1016/j.phpro.2010. 07.034.
    [19] RADICCHI F. Human activity in the web[J]. Physical Review E, 2009, 80(2): 026118. doi:  10.1103/PhysRevE.80.026118.
    [20] LESKOVEC J and HORVITZ E. Planetary-scale views on a large instant-messaging network[C]. Proceedings of the 17th International Conference on World Wide Web, ACM, USA, 2008: 915-924. doi:  10.1145/1367497.1367620.
    [21] GOETZ M, LESKOVEC J, MCGLOHON M, et al. Modeling blog dynamics[C]. Third International AAAI Conference on Weblogs and Social Media, California, USA, 2009: 1-8.
    [22] OLIVEIRA J G and BARABASI A L. Human dynamics: Darwin and Einstein correspondence patterns[J]. Nature, 2005, 437: 1251-1251. doi:  10.1038/4371251a.
    [23] MASUDA N, KIM J S, and KAHNG B. Priority queues with bursty arrivals of incoming tasks[J]. Physical Review E, 2009, 79(3): 036106. doi:  10.1103/PhysRevE.79.036106.
    [24] CAJUEIRO D O and MALDONADO W L. Role of optimization in the human dynamics of task execution[J]. Physical Review E, 2008, 77(3): 035101. doi: 10.1103/ PhysRevE.77.035101.
    [25] OLIVEIRA J G and VAZQUEZ A. Impact of interactions on human dynamics[J]. Physica A: Statistical Mechanics and Its Applications, 2009, 388(2/3): 187-192. doi: http: //dx.doi. org/10.1016/j.physa. 2008.08.022.
    [26] MIN B, GOH K I, and KIM I M. Waiting time dynamics of priority-queue networks[J]. Physical Review E, 2009, 79(5): 056110. doi:  10.1103/PhysRevE.79.056110.
    [27] VAZQUEZ A. Impact of memory on human dynamics[J]. Physica A: Statistical Mechanics and Its Applications, 2007, 373: 747-752. doi: http: //dx.doi.org/10.1016/j.physa.2006. 04.060.
    [28] HAN X P, ZHOU T, and WANG B H. Modeling human dynamics with adaptive interest[J]. New Journal of Physics, 2008, 10(7): 073010. doi:  10.1088/1367-2630/10/7/073010.
    [29] SHANG M S, CHEN G X, DAI S X, et al. Interest-driven model for human dynamics[J]. Chinese Physics Letters, 2010(27): 048701. doi:  10.1088/0256-307X/27/4/048701.
    [30] HIDALGO R C A. Conditions for the emergence of scaling in the inter-event time of uncorrelated and seasonal systems[J]. Physica A: Statistical Mechanics and Its Applications, 2006, 369(2): 877-883. doi: http: //dx.doi.org/10.1016/j.physa. 2005.12.035.
    [31] 韩佳, 肖如良, 胡耀, 等. 在线社交网络中信息传播模式的特征分析[J]. 计算机应用, 2013, 33(1): 105-107. doi: 10. 3724/SP.J.1087.2013.00105.
    [32] HAN J, XIAO R L, HU Y, et al. Characteristic analysis of information propagation pattern in online social network[J]. Journal of Computer Applications, 2013, 33(1): 105-107. doi:  10.3724/SP.J.1087.2013.00105.
    [33] 张赛, 徐恪, 李海涛. 微博类社交网络中信息传播的测量与分析[J]. 西安交通大学学报, 2013, 47(2): 124-129. doi: 10.7652/ xjtuxb201302021.
    [34] ZHANG S, XU K, and LI H. Measurement and analysis of information propagation in online social networks like micro-blog[J]. Journal of Xian Jiaotong University, 2013, 47(2): 124-129. doi:  10.7652/xjtuxb201302021.
    [35] 李洋, 陈毅恒, 刘挺. 微博信息传播预测研究综述[J]. 软件学报, 2016, 27(2): 247-263. doi:  10.13328/j.cnki.jos.004944.
    [36] LI Y, CHEN Y H, and LIU T. Survey on predicting information propagation in microblogs[J]. Journal of Software, 2016, 27(2): 247-263. doi:  10.13328/j.cnki.jos.004944.
    [37] CENTOLA D. The spread of behavior in an online social network experiment[J]. Science, 2010, 329(5996): 1194-1197. doi:  10.1126/science.1185231.
    [38] GUILLE A, HACID H, FAVRE C, et al. Information diffusion in online social networks: A survey[J]. ACM SIGMOD Record, 2013, 42(2): 17-28. doi: 10.1145/2503792. 2503797.
    [39] KARSAI M, KIVELA M, PAN R K, et al. Small but slow world: How network topology and burstiness slow down spreading[J]. Physical Review E, 2011, 83(2), 025102. doi:  10.1103/PhysRevE.83.025102.
    [40] ZHAO L, WANG J, CHEN Y, et al. SIHR rumor spreading model in social networks[J]. Physica A: Statistical Mechanics and Its Applications, 2012, 391(7): 2444-2453. doi: http: // dox.doi.org/10.1016/j.physa.2011.12.008.
    [41] ZHAO L, CUI H, QIU X, et al. SIR rumor spreading model in the new media age[J]. Physica A: Statistical Mechanics and Its Applications, 2013, 392(4): 995-1003. doi: http: //dox. doi.org/10.1016/j.physa. 2012.09.030.
    [42] LU L, CHEN D B, and ZHOU T. The small world yields the most effective information spreading[J]. New Journal of Physics, 2011, 13(12): 123005. doi: 10.1088/1367-2630/13/ 12/123005.
    [43] ZHENG M, LU L, and ZHAO M. Spreading in online social networks: The role of social reinforcement[J]. Physical Review E, 2013, 88(1): 012818. doi:  10.1103/PhysRevE.88.012818.
    [44] ZHOU T, LIU J G, BAI W J, et al. Behaviors of susceptible- infected epidemics on scale-free networks with identical infectivity[J]. Physical Review E, 2006, 74(5): 056109. doi:  10.1103/PhysRevE.74.056109.
    [45] 朱张祥, 刘咏梅. 在线社交网络谣言传播的仿真研究基于聚类系数可变的无标度网络环境[J]. 复杂系统与复杂性科学, 2016, 13(2): 74-82. doi: 10.13306/j.1672-3813.2016.02. 009.
    [46] ZHU Z X and LIU Y M. Simulation study of propagation of rumor in online social network based on scale-free network with tunable clustering[J]. Complex Systems and Complexity Science, 2016, 13(2): 74-82. doi: 10.13306/j.1672-3813.2016. 02.009.
    [47] VAZQUEZ A. Polynomial growth in branching processes with diverging reproductive number[J]. Physical Review Letters, 2006, 96(3): 038702. doi: 10.1103/PhysRevLett.96. 038702.
    [48] VAZQUEZ A, RACZ B, LUKACS A, et al. Impact of non- Poissonian activity patterns on spreading processes[J]. Physical Review Letters, 2007, 98(15): 158702. doi: 10.1103/ PhysRevLett.98.158702.
    [49] IRIBARREN J L. Impact of human activity patterns on the dynamics of information diffusion[J]. Physical Review Letters, 2009, 103(3): 038702. doi:  10.1103/PhysRevLett.103.038702.
    [50] MIN B, GOH K I, and VAZQUE A. Spreading dynamics following bursty human activity patterns[J]. Physical Review E, 2011, 83(3): 036102. doi:  10.1103/PhysRevE.83.036102.
    [51] Yang Z, Cui A X, and Zhou T. Impact of heterogeneous human activities on epidemic spreading[J]. Physica A: Statistical Mechanics and Its Applications, 2011, 390(23): 4543-4548. doi:  10.1016/j.physa.2011.06.068.
    [52] 吴联仁, 李瑾颉, 闫强. 基于时间异质性的微博信息传播模型[J]. 电子科技大学学报, 2015, 44(5): 657-662. doi: 10.3969/ j.issn.1001-0548.2015.05.003.
    [53] WU L R, LI J J, and YAN Q. Micro-blog information spreading model based on temporal heterogeneity[J]. Journal of University of Electronic Science and Technology of China, 2015, 44(5): 657-662. doi: 10.3969/j.issn.1001-0548.2015.05. 003.
    [54] KIM S. Self-organized pinning and interface growth in a random medium[J]. Physical Review Letters, 1992, 69(24): 3539. doi:  10.1103/PhysRevLett.69.3539.
    [55] STEHL J, BARRAT A, and BIANCONI G. Dynamical and bursty interactions in social networks[J]. Physical Review E, 2010, 81(3): 035101. doi:  10.1103/PhysRevE.81.035101.
    [56] JO H H, PAN R K, and KASKI K. Emergence of bursts and communities in evolving weighted networks[J]. PloS One, 2011, 6(8): e22687. doi:  10.1371/journal.pone.0022687.
    [57] YAN Q, WU L, LIU C, et al. Information propagation in online social network based on human dynamics[C]. Abstract and Applied Analysis, New York, USA, 2013: 1-7. doi: 10. 1155/2013/953406.
    [58] YAN Q, WU L, and YI L. Research on the human dynamics in mobile communities based on social identity[J]. Discrete Dynamics in Nature and Society, 2012, 2012. doi: 10.1155/ 2012/672756.
    [59] GRABOWICZ P A, RAMASCO J J, GONCALVES B, et al. Entangling mobility and interactions in social media[J]. PloS One, 2014, 9(3): e92196. doi:  10.1371/journal.pone.0092196.
    [60] GLEESON J P, WARD J A, OSULLIVAN K P, et al. Competition-induced criticality in a model of meme popularity[J]. Physical Review Letters, 2014, 112(4): 048701. doi:  10.1103/PhysRevLett.112.048701.
    [61] ZHAO L, QIU X, WANG X, et al. Rumor spreading model considering forgetting and remembering mechanisms in inhomogeneous networks[J]. Physica A: Statistical Mechanics and Its Applications, 2013, 392(4): 987-994. doi: http: //dx.doi.org/10.1016/j.physa.2012.10.031.
    [62] HOLME P and SARAMAKI J. Temporal networks[J]. Physics Reports, 2012, 519(3): 97-125. doi: 10.1016/j.physrep. 2012.03.001.
    [63] LEE S, ROCHA L E C, LILJEROS F, et al. Exploiting temporal network structures of human interaction to effectively immunize populations[J]. PloS One, 2012, 7(5): e36439. doi:  10.1371/journal.pone.0036439.
    [64] BOCCALETTI S, BIANCONI G, CRIADO R, et al. The structure and dynamics of multilayer networks[J]. Physics Reports, 2014, 544(1): 1-122. doi: 10.1016/j.physrep.2014. 07.001.
    [65] SALEHI M, SHARMA R, MARZOLLA M, et al. Spreading processes in multilayer networks[J]. IEEE Transactions on Network Science and Engineering, 2015, 2(2): 65-83. doi:  10.1109/TNSE.2015.2425961.
    [66] KIVELA M, ARENAS A, BARTHELEMY M, et al. Multilayer networks[J]. Journal of Complex Networks, 2014, 2(3): 203-271. doi:  10.1093/comnet/cnu016.
  • [1] 陈墨, 陈成杰, 包伯成, 徐权.  忆阻突触耦合Hopfield神经网络的初值敏感动力学, 电子与信息学报. doi: 10.11999/JEIT190858
    [2] 黄宏程, 赖礼城, 胡敏, 孙欣然, 陶洋.  基于严格可控理论的社交网络信息传播控制方法, 电子与信息学报. doi: 10.11999/JEIT170966
    [3] 侯志强, 王鑫, 余旺盛, 戴铂, 金泽芬芬.  基于自适应深度稀疏网络的在线跟踪算法, 电子与信息学报. doi: 10.11999/JEIT160762
    [4] 黄友锐, 陈珍萍, 李德权, 唐超礼, 曲立国.  无线传感器网络二阶一致性时间同步, 电子与信息学报. doi: 10.11999/JEIT160382
    [5] 蔚保国, 鲍亚川, 魏海涛.  面向时间同步业务的空间信息网络拓扑聚合图模型, 电子与信息学报. doi: 10.11999/JEIT170252
    [6] 李磊, 汪萌, 吴信东.  基于社交网络的社交行为分析, 电子与信息学报. doi: 10.11999/JEIT161273
    [7] 徐少毅, 张鹏.  D2D协作通信网络中基于社交信息的中继选择和功率分配, 电子与信息学报. doi: 10.11999/JEIT160746
    [8] 胡丁晟, 仇晓兰, StianN.Anfinsen, 雷斌.  一种面向高异质性极化SAR图像的等效视数非监督估计方法, 电子与信息学报. doi: 10.11999/JEIT170014
    [9] 胡颖, 胡长军, 傅树深, 黄建一.  流行度演化分析与预测综述, 电子与信息学报. doi: 10.11999/JEIT160743
    [10] 潘理, 吴鹏, 黄丹华.  在线社交网络群体发现研究进展, 电子与信息学报. doi: 10.11999/JEIT161192
    [11] 胡长军, 许文文, 胡颖, 方明哲, 刘峰.  在线社交网络信息传播研究综述, 电子与信息学报. doi: 10.11999/JEIT161136
    [12] 方滨兴.  在线社交网络的挖掘与分析专题序言, 电子与信息学报.
    [13] 刘业政, 李玲菲, 姜元春.  社会化营销绩效最大化问题及其扩展研究综述, 电子与信息学报. doi: 10.11999/JEIT160517
    [14] 胡文, 刘中, 李春彪.  距离-速度-加速度联合模糊函数计算:信号动力学表示方法, 电子与信息学报. doi: 10.3724/SP.J.1146.2007.00770
    [15] 金文光, 王金铭.  基于符号动力学的混沌信号处理研究, 电子与信息学报.
    [16] 廖晓峰, 吴中福, 王康, 虞厥邦.  带分布时延神经网络:从稳定到振荡再到稳定的动力学现象, 电子与信息学报.
    [17] 刘小河.  连续非对称神经网络的动力学特性, 电子与信息学报.
    [18] 王昌标, 涂剑南, 蒋华北, 孙雁.  论证电子回旋脉塞动力学理论的两种方法, 电子与信息学报.
    [19] 万遂人.  论电子回旋脉塞动力学理论, 电子与信息学报.
    [20] 海宇涵, 周忠毅.  非晶硅光电导响应的动力学研究(Ⅰ)强电场下的光电导响应, 电子与信息学报.
  • 加载中
  • 计量
    • 文章访问数:  437
    • HTML全文浏览量:  28
    • PDF下载量:  433
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-09-19
    • 修回日期:  2017-02-13
    • 刊出日期:  2017-04-19

    目录

      /

      返回文章
      返回

      官方微信,欢迎关注