高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

极化SAR图像目标分解方法的研究进展

张腊梅 段宝龙 邹斌

张腊梅, 段宝龙, 邹斌. 极化SAR图像目标分解方法的研究进展[J]. 电子与信息学报, 2016, 38(12): 3289-3297. doi: 10.11999/JEIT160992
引用本文: 张腊梅, 段宝龙, 邹斌. 极化SAR图像目标分解方法的研究进展[J]. 电子与信息学报, 2016, 38(12): 3289-3297. doi: 10.11999/JEIT160992
ZHANG Lamei, DUAN Baolong, ZOU Bin. Research Development on Target Decomposition Method of Polarimetric SAR Image[J]. Journal of Electronics and Information Technology, 2016, 38(12): 3289-3297. doi: 10.11999/JEIT160992
Citation: ZHANG Lamei, DUAN Baolong, ZOU Bin. Research Development on Target Decomposition Method of Polarimetric SAR Image[J]. Journal of Electronics and Information Technology, 2016, 38(12): 3289-3297. doi: 10.11999/JEIT160992

极化SAR图像目标分解方法的研究进展

doi: 10.11999/JEIT160992
基金项目: 

国家自然科学基金(61401124),黑龙江省博士后科研启动基金(LBH-Q13069)

Research Development on Target Decomposition Method of Polarimetric SAR Image

Funds: 

The National Natural Science Foundation of China (61401124), The Postdoctoral Scientific Research Developmental Foundation of Heilongjiang Province (LBH- Q13069)

  • 摘要: 极化合成孔径雷达(极化SAR)经过近几年的迅速发展,已经成为遥感领域的一大研究热点。极化目标分解作为极化SAR图像分析的一种基本手段,所提取的极化信息是极化SAR图像目标检测和分类的基础,在极化SAR图像解译中起着关键作用。通过对近几年极化目标分解方法的发展作一个全面的阐述,重点介绍该领域出现的新技术,使相关研究人员能够更清晰地了解这一领域的最新进展。
  • [1] 王振力, 钟海. 国外先进星载SAR卫星的发展现状及应用[J]. 国防科技, 2016, 37(1): 19-24. doi: 10.13943/j.issn1671-4547. 2016.01.06.
    [2] WANG Zhenli and ZHONG Hai. The nowadays development and application of oversea advanced space borne SARS[J]. National Defense Science Technology, 2016, 37(1): 19-24. doi:  10.13943/j.issn1671-4547.2016.01.06.
    [3] CHEN F, LASAPONARA R, and MASINI N. An overview of satellite synthetic aperture radar remote sensing in archaeology: From site detection to monitoring[J]. Journal of Cultural Heritage, 2015, 2015: 1-7. doi: 10.1016/j.culher. 2015.05.003.
    [4] YANG J, YAMAGUCHI Y, LEE J S, et al. Applications of polarimetric SAR[J]. Journal of Sensors, 2015, 2015: 1-2. doi:  10.1155/2015/316391.
    [5] 陈曦, 吴涛, 陶利, 等. 极化SAR发展需求及其目标识别关键技术[J]. 科技视界, 2015, (16): 21-22.
    [6] CHEN Xi, WU Tao, TAO Li, et al. Development needs of polarimetric SAR and key technology of target recognition[J]. Science Technology Vision, 2015, (16): 21-22.
    [7] JAWAK S D, BIDAWE T G, and LUIS A J. A review on applications of imaging synthetic aperture radar with a special focus on cryospheric studies[J]. Advances in Remote Sensing, 2015, 4(2): 163-175. doi:  10.4236/ars.2015.42014.
    [8] KROGAGER E. Aspects of polarimetric radar imaging[D]. [Ph.D. dissertation], TUD, Lyngby, Denmark, 1993.
    [9] KROGAGER E and CZYZ Z H. Properties of the sphere, diplane, helix decomposition[C]. Proceedings of JIPR'95, Nantes, France, 1995: 106-114.
    [10] CAMERON W L and LEUNG L K. Feature motivated polarization scattering matrix decomposition[C]. IEEE International Radar Conference, Arlington, VA, 1990: 549-557.
    [11] CAMERON W L, YOUSSEF N N, and LEUNG L K. Simulated polarimetric signatures of primitive geometrical shapes[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(3): 793-803.
    [12] TOUZI R. Characterization of target symmetric scattering using polarimetric SARs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2507-2516.
    [13] TOUZI R. Target scattering decomposition of one-look and multi-look SAR data using a new coherent scattering model: The TSVM[C]. IEEE International Geosience and Remote Sensing Symposium, Alaska, USA, 2004: 2491-2494.
    [14] CLOUDE S R and POTTIER E. A review of target decomposition theorems in radar polarimetry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(2): 498-518.
    [15] PALADINI R, MARTORELLA M, and BERIZZI F. Classification of man-made targets via invariant coherency- matrix eigenvector decomposition of polarimetric SAR/ISAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(8): 3022-3034. doi: 10.1109/TGRS.2011. 2116121.
    [16] PALADINI R, FERRO F L, POTTIER E, et al. Lossless and sufficient-invariant decomposition of random reciprocal target[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(9): 3487-3501. doi: 10.1109/TGRS.2011. 2181397.
    [17] FREEMAN A. Calibration of linearly polarized polarimetric SAR data subject to faraday rotation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(8): 1617-1624. doi:  10.1109/TGRS.2004.830161.
    [18] ZOU B, LU D, ZHANG L, et al. Eigen-decomposition-based four-component decomposition for PolSAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(3): 1286-1296. doi: 10.1109/ JSTARS.2015.2513161.
    [19] HUYNEN J R. Phenomenological theory of radar targets[D]. [Ph.D. dissertation], University of Technology, 1970.
    [20] VAN ZYL J J. Unsupervised classification of scattering behavior using radar polarimetry data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1989, 27(1): 36-45.
    [21] DONG Y, FROSTER B C, and TICEHURST C. A new decomposition of radar polarization signatures[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3): 933-939.
    [22] 王之禹, 朱敏惠, 白有天. 基于散射模型的极化SAR数据分解[J]. 电子与信息学报, 2001, 23(10): 954-961.
    [23] WANG Zhiyu, ZHU Minhui, and BAI Youtian. Decomposition of Polarimetric SAR data model[J]. Journal of Electronics Information Technology, 2001, 23(10): 954-961.
    [24] CLOUDE S R and POTTIER E. An entropy based classification scheme for land applications of polarimetric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(1): 68-78.
    [25] AN W, CUI Y, YANG J, et al. Fast alternatives to H/alpha for polarimetric SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(2): 343-347. doi: 10.1109/LGRS.2009. 2035135.
    [26] HOLM W A and BAMES R M. On radar polarization mixed target state decomposition techniques[C]. Proceedings of the IEEE National Radar Conference, Dallas, Texas, USA, 1988: 249-254.
    [27] VAN ZYL J J. Application of Cloudes target decomposition theorem to polarimetric imaging radar data[C]. Proceedings of SPIE - The International Society for Optical Engineering, San Diego, CA, USA, 1993: 184-191.
    [28] AINSWORTH T L, CLOUDE S R, and LEE J S. Eigenvector analysis of polarimetric SAR data[C]. IEEE International Geosience and Remote Sensing Symposium, Toronto, Canada, 2002, Vol.1: 626-628.
    [29] FREEMAN A and DURDEN S. A Three-component scattering model to describe polarimetric SAR data[C]. Proceedings SPZE Conference on Radar Polarimetry, San Diego, CA, USA, 1993: 213-224.
    [30] MORIYAMA T, URATSUKA S, UMEHARA T, et al. Polarimetric SAR image analysis using model fit for urban structures[J]. IEICE Transactions on Communications, 2005, 88(3): 1234-1243.
    [31] YAMAGUCHI Y, MORIYAMA T, ISHIDO M, et al. Four-component scattering model for polarimetric SAR image decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(8): 1699-1706. doi: 10.1109/TGRS. 2005.852084.
    [32] ZHANG L, ZOU B, CAI H, et al. Multiple-component scattering model for polarimetric SAR image decomposition [J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4): 603-607. doi:  10.1109/LGRS.2008.2000795.
    [33] LEE J S, AINSWORTH T L, and WANG Y. Recent advances in scattering model-based decompositions: An overview[C]. IEEE International Geoscience Remote Sensing Symposium (IGARSS'11), Vancouver, BC, Canada, 2011: 9-12.
    [34] ANTROPOV O, RAUSTE Y, and HAME T. Volume scattering modeling in PolSAR decompositions: Study of ALOS PALSAR data over boreal forest[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3838-3848. doi:  10.1109/TGRS.2011.2138146.
    [35] ARII M, VAN ZYL J J, and KIM Y. Adaptive model-based decomposition of polarimetric SAR covariance matrices[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(3): 1104-1113. doi:  10.1109/TGRS.2010.2076285.
    [36] VAN ZYL J J, ARII M, and KIM Y. Model-based decomposition of polarimetric SAR covariance matrices constrained for nonnegative eigenvalues[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9): 3452-3459. doi:  10.1109/TGRS.2011.2128325.
    [37] 刘高峰, 李明, 王亚军, 等. 基于层次非负特征值约束的Yamaguchi分解[J]. 电子与信息学报, 2013, 35(11): 2678-2685. doi:  10.3724/SP.J.1146.2012.01381.
    [38] LIU Gaofeng, LI Ming, WANG Yajun, et al. Yamaguchi decomposition based on hierarchical nonnegative eigenvalue restriction[J]. Journal of Electronics Information Technology, 2013, 35(11): 2678-2685. doi: 10.3724/SP.J.1146. 2012.01381.
    [39] WANG C, YU W, WANG R, et al. Comparison of nonnegative eigenvalue decompositions with and without reflection symmetry assumptions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(4): 2278-2287. doi:  10.1109/TGRS.2013.2259177.
    [40] 蔡永俊, 张祥坤, 姜景山. 极化SAR自适应三分量分解方法[J]. 测绘学报, 2016, 45(9): 1089-1095. doi: 10.11947/j.AGCS. 2016.20150533.
    [41] CAI Yongjun, ZHANG Xiangkun, and JIANG Jingshan. Adaptive three-component decomposition approach for polarimetric SAR data[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(9): 1089-1095. doi: 10.11947/j.AGCS.2016. 20150533.
    [42] AN W, CUI Y, and YANG J. Three-component model-based decomposition for polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(6): 2732-2739. doi:  10.1109/TGRS.2010.2041242.
    [43] YAMAGUCHI Y, SATO A, BOERNER W M, et al. Four-component scattering power decomposition with rotation of coherency matrix[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6): 2251-2258.
    [44] SUGIMOTO M, OUCHI K, and NAKAMURA Y. Four-component scattering power decomposition algorithm with rotation of covariance matrix using ALOS-PALSAR polarimetric data[J]. Remote Sensing, 2012, 4(8): 2199-2209. doi:  10.3390/rs4082199.
    [45] CHEN S W, WANG X S, XIAO S P, et al. General polarimetric model-based decomposition for coherency matrix[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(3): 1843-1855.
    [46] BHATTACHARYA A, MUHURI A, DE S, et al. Modifying the yamaguchi four-component decomposition scattering powers using a stochastic distance[J]. IEEE Journal of Selected Topics in Applied Earth Observations Remote Sensing, 2015, 8(7): 3497-3506. doi: 10.1109/JSTARS.2015. 2420683.
    [47] 闫丽丽, 张继贤, 高井祥, 等. 一种适合方位建筑物的基于物理散射模型的极化SAR影像四分量分解方法[J]. 电子学报, 2015, 43(1): 203-208. doi: 10.3969/j.issn.0372-2112.2015.01. 032.
    [48] YAN Lili, ZHANG Jixian, GAO Jingxiang, et al. Four- Component model-based decomposition of Polarimetric SAR data for oriented urban buildings[J]. Acta Electronica Sinica, 2015, 43(1): 203-208. doi: 10.3969/j.issn.0372-2112.2015.01. 032.
    [49] SHUANG Z, SHUANG W, LI-CHENG R, et al. A novel hybrid Freeman/eigenvalue decomposition with general scattering models[J]. Journal of Infrared Millimeter Waves, 2015, 34(3): 265-270. doi: 10.11972/j.issn.1001-9014.2015.03. 002.
    [50] 车美琴, 阿里木赛买提, 杜培军, 等. 利用旋转不变特征提取全极化SAR影像人工地物[J]. 遥感学报, 2016, 20(2): 303-314. doi:  10.11834/jrs.20165098.
    [51] CHE Meiqin, SAMAT A, DU Peijun, et al. Urban man-made target extraction from Quad-PolSAR imagery with roll-invariant parameters[J]. Journal of Remote Sensing, 2016, 20(2): 303-314. doi:  10.11834/jrs.20165098.
    [52] 范庆辉, 卢红喜, 保铮, 等. 基于半正定约束的极化相似度最优模型匹配目标分解[J]. 电子与信息学报, 2015, 37(8): 1821-1827. doi:  10.11999/JEIT141468.
    [53] FAN Qinghui, LU Hongxi, BAO Zheng, et al. Positive- semidefinite based target decomposition using optimal model-matching with polarization similarity[J]. Journal of Electronics Information Technology, 2015, 37(8): 1821-1827. doi:  10.11999/JEIT141468.
    [54] 殷君君, 安文韬, 杨健, 等. 一种改进的极化SAR图像四成分分解方法[J]. 信息与电子工程, 2011, 9(2): 127-132.
    [55] YIN Junjun, AN Wentao, YANG Jian, et al. A modified four- component model-based scattering decomposition method of polarimetric SAR images[J]. Information Electronic Engineering, 2011, 9(2): 127-132.
    [56] 李春升, 王伟杰, 王鹏波, 等. 星载SAR技术的现状与发展趋势[J]. 电子与信息学报, 2016, 38(1): 229-240. doi: 10.11999/ JEIT151116.
    [57] LI Chunsheng, WANG Weijie, WANG Pengbo, et al. Current situation and development trends of spaceborne SAR technology[J]. Journal of Electronics Information Technology, 2016, 38(1): 229-240. doi:  10.11999/JEIT151116.
    [58] BOERNER W M. The development of multi-band equatorial orbiting POLSAR satellite sensors[C]. IEEE International Conference on Aerospace Electronics Remotes Sensing Technology, Yogyakarta, Indonesia, 2014: 127-131.
    [59] BALLESTER-BERMAN J D and LOPEZ-SANCHEZ J M. Applying the Freeman-Durden decomposition concept to polarimetric SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(1): 466-479. doi:  10.1109/TGRS.2009.2024304.
    [60] MINH N P, ZOU B, CAI H, et al. Forest height estimation from mountain forest areas using general model-based decomposition for PolInSAR image[J]. Journal of Applied Remote Sensing, 2014, 8(1): 083676, doi: 10.1117/1.JRS.8. 083676.
  • [1] 李龙, 刘峥.  基于核主分量相关判别分析特征提取方法的目标HRRP识别, 电子与信息学报. doi: 10.11999/JEIT170329
    [2] 赵越, 陈之纯, 纠博, 张磊, 刘宏伟, 李真芳.  一种基于时频分析的窄带雷达飞机目标分类特征提取方法, 电子与信息学报. doi: 10.11999/JEIT161204
    [3] 罗甫林, 黄鸿, 刘嘉敏, 冯海亮.  基于半监督稀疏流形嵌入的高光谱影像特征提取, 电子与信息学报. doi: 10.11999/JEIT151340
    [4] 余淮, 杨文.  一种无人机航拍影像快速特征提取与匹配算法, 电子与信息学报. doi: 10.11999/JEIT150676
    [5] 张群, 何其芳, 罗迎.  基于贝塞尔函数基信号分解的微动群目标特征提取方法, 电子与信息学报. doi: 10.11999/JEIT161036
    [6] 范庆辉, 慕建君, 项德良, 宋文青.  基于非平稳性和极化相干系数比的PolSAR图像建筑物检测, 电子与信息学报. doi: 10.11999/JEIT161000
    [7] 杜兰, 史蕙若, 李林森, 孙永光, 胡靖.  基于分数阶傅里叶变换的窄带雷达飞机目标回波特征提取方法, 电子与信息学报. doi: 10.11999/JEIT161035
    [8] 范学满, 胡生亮, 贺静波.  对海雷达目标识别中全极化HRRP的特征提取与选择, 电子与信息学报. doi: 10.11999/JEIT160722
    [9] 崔浩贵, 刘涛, 蒋宇中, 高俊.  基于混合矩的极化SAR图像K分布模型参数估计新方法, 电子与信息学报. doi: 10.11999/JEIT140551
    [10] 杨学志, 陈靖, 周芳, 郎文辉, 郑鑫, 李国强.  基于同质像素预选择的极化SAR图像非局部均值滤波, 电子与信息学报. doi: 10.11999/JEIT150314
    [11] 陈博, 王爽, 焦李成, 刘芳, 毛莎莎, 张爽.  利用0-1矩阵分解集成的极化SAR图像分类, 电子与信息学报. doi: 10.11999/JEIT141059
    [12] 范庆辉, 卢红喜, 保铮, 肖春宝.  基于半正定约束的极化相似度最优模型匹配目标分解, 电子与信息学报. doi: 10.11999/JEIT141468
    [13] 韩勋, 杜兰, 刘宏伟.  基于窄带雷达组网的空间锥体目标特征提取方法, 电子与信息学报. doi: 10.3724/SP.J.1146.2013.02037
    [14] 刘高峰, 李明, 王亚军, 张鹏, 吴艳.  基于层次非负特征值约束的Yamaguchi分解, 电子与信息学报. doi: 10.3724/SP.J.1146.2012.01381
    [15] 刘高峰, 李明, 王亚军, 张鹏.  一种新的基于非反射对称非负特征值分解的Freeman分解, 电子与信息学报. doi: 10.3724/SP.J.1146.2012.00897
    [16] 王鹏宇, 周智敏, 金添, 王玉明.  一种基于特征提取的车载前视步进频率虚拟孔径雷达速度补偿方法, 电子与信息学报. doi: 10.3724/SP.J.1146.2010.01352
    [17] 艾小锋, 李永祯, 赵锋, 肖顺平.  基于多视角一维距离像序列的进动目标特征提取, 电子与信息学报. doi: 10.3724/SP.J.1146.2011.00360
    [18] 艾小锋, 邹小海, 李永祯, 赵锋, 肖顺平.  基于时间-距离像分布的锥体目标进动与结构特征提取, 电子与信息学报. doi: 10.3724/SP.J.1146.2011.00097
    [19] 罗磊, 李跃华.  基于非相关判别邻域保持投影的毫米波雷达目标识别, 电子与信息学报. doi: 10.3724/SP.J.1146.2009.01534
    [20] 张旻, 王若冰, 钟子发.  通信电台个体识别中的载波稳定度特征提取技术研究, 电子与信息学报. doi: 10.3724/SP.J.1146.2007.00383
  • 加载中
  • 计量
    • 文章访问数:  650
    • HTML全文浏览量:  80
    • PDF下载量:  567
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-09-29
    • 修回日期:  2016-11-14
    • 刊出日期:  2016-12-19

    目录

      /

      返回文章
      返回

      官方微信,欢迎关注