高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含励磁环节的分数阶电力系统混沌振荡分析与控制

闵富红 王耀达 窦一平

闵富红, 王耀达, 窦一平. 含励磁环节的分数阶电力系统混沌振荡分析与控制[J]. 电子与信息学报, 2017, 39(8): 1993-1999. doi: 10.11999/JEIT161398
引用本文: 闵富红, 王耀达, 窦一平. 含励磁环节的分数阶电力系统混沌振荡分析与控制[J]. 电子与信息学报, 2017, 39(8): 1993-1999. doi: 10.11999/JEIT161398
MIN Fuhong, WANG Yaoda, Dou Yiping. Analysis and Control of Chaotic Oscillation in Fractional-order Power System with Excitation Model[J]. Journal of Electronics and Information Technology, 2017, 39(8): 1993-1999. doi: 10.11999/JEIT161398
Citation: MIN Fuhong, WANG Yaoda, Dou Yiping. Analysis and Control of Chaotic Oscillation in Fractional-order Power System with Excitation Model[J]. Journal of Electronics and Information Technology, 2017, 39(8): 1993-1999. doi: 10.11999/JEIT161398

含励磁环节的分数阶电力系统混沌振荡分析与控制

doi: 10.11999/JEIT161398
基金项目: 

国家自然科学基金(51475246),江苏省自然科学基金(BK20131402)

Analysis and Control of Chaotic Oscillation in Fractional-order Power System with Excitation Model

Funds: 

The National Natural Science Foundation of China (51475246), The Natural Science Foundation of Jiangsu Province (BK20131402)

  • 摘要: 该文以含励磁环节的分数阶四阶电力系统模型为对象,研究其动力学行为并加以同步控制。首先,固定系统参数,利用分岔图和最大Lyapunov指数谱计算系统产生混沌振荡的最低阶次。其次,以单变量法分别研究机械功率、阻尼系数和励磁增益的改变对系统动力学行为的影响,通过数值仿真绘制系统随参数变化下的分岔图、Lyapunov指数谱等,选取不同的系统初值,研究同一系统在不同初值的情况下存在的多吸引子共存现象。最后,基于分数阶系统稳定性理论和非线性反馈控制理论,设计同步控制器实现系统混沌控制,数值仿真验证了所设计控制器的有效性。
  • 王宝华, 杨成梧, 张强. 电力系统分岔与混沌研究综述[J]. 电工技术学报, 2005, 20(7): 1-10.
    WANG Baohua, YANG Chengwu, and ZHANG Qiang. Summary of bifurcation and chaos research in electric power system[J]. Transactions of China Electrotechnical Society, 2005, 20(7): 1-10.
    NI Junkang, LIU Ling, LIU Chongxin, et al. Fast fixed-time nonsingular terminal sliding mode control and its application to chaos suppression in power system[J]. IEEE Transactions Circuits and Systems-II: Express Briefs, 2017, 64(2): 151-155. doi: 10.1109/TCSII.2016.2551539.
    杨珺, 王雅光, 孙秋野, 等. 智能电网的失稳与混沌[J]. 东北大学学报(自然科学版), 2016, 37(1): 6-10. doi: 10.3969/j.issn. 1005-3026.2016.01.002.
    YANG Jun, WANG Yaguang, SUN Qiuye, et al. Instability and chaos of smart grid[J]. Journal of Northeastern University (Natural Science), 2016, 37(1): 6-10. doi: 10.3969/ j.issn.1005-3026.2016.01.002.
    余晓丹, 贾宏杰, 王成山. 时滞电力系统全特征谱追踪算法及其应用[J]. 电力系统自动化, 2012, 36(24): 10-14. doi: 10.3969 /j.issn.1000-1026.2012.24.003.
    YU Xiaodan, JIA Hongjie, and WANG Chengshan. An eigenvalue spectrum tracing algorithm and its application in time delay power systems[J]. Automation of Electric Power Systems, 2012, 36(24): 10-14. doi: 10.3969/j.issn.1000-1026. 2012.24.003.
    VENKATASUBRAMANIAN V and JI W. Coexistence of four different attractors in a fundamental power system model[J]. IEEE Transactions on Circuits and Systems : Fundamental Theory and Applications, 1999, 46(3): 405-409.
    MIN Fuhong, WANG Yaoda, PENG Guangya, et al. Bifurcations, chaos and adaptive backstepping sliding mode control of a power system with excitation limitation[J]. AIP Advances, 2016, 6(8): 08521401-08521411. doi: 10.1063/ 1.4961696.
    MA Meiling and MIN Fuhong. Bifurcation behavior and coexisting motions in a time-delayed power system[J]. Chinese Physics B, 2015, 24(3): 03050101-03050109. doi: 10. 1088/1674-1056/24/3/030501.
    胡建兵, 赵灵冬. 分数阶系统稳定性理论与控制研究[J]. 物理学报, 2013, 62(24): 24050401-24050407. doi: 10.7498/aps.62. 240504.
    HU Jianbing and ZHAO Lingdong. Stability theorem and control of fractional systems[J]. Acta Physica Sinica, 2013, 62(24): 24050401-24050407. doi: 10.7498/aps.62.240504.
    谭文, 张敏, 李志攀. 分数阶互联电力系统混沌振荡及其同步控制[J]. 湖南科技大学学报(自然科学版), 2011, 26(2): 74-78.
    TAN Wen, ZHANG Min, and LI Zhipan. Chaotic oscillation of interconnected power system and its synchronization[J]. Journal of Hunan University of Science Technology (Natural Science Edition), 2011, 26(2): 74-78.
    张友安, 余名哲, 耿宝亮. 基于投影法的不确定分数阶混沌系统自适应同步[J]. 电子与信息学报, 2015, 37(2): 455-460. doi: 10.11999/JEIT140514.
    ZHANG Youan, YU Mingzhe, and GENG Baoliang. Adaptive synchronization of uncertain fractional-order chaotic systems based on projective method[J]. Journal of Electronics Information Technology, 2015, 37(2): 455-460. doi: 10.11999/JEIT140514.
    王诗兵, 王兴元. 超混沌复系统的自适应广义组合复同步及参数辨识[J]. 电子与信息学报, 2016, 38(8): 2062-2067. doi: 10.11999/JEIT160101.
    WANG Shibing and WANG Xingyuan. Adaptive generalized combination complex synchronization and parameter identification of hyperchaotic complex systems[J]. Journal of Electronics Information Technology, 2016, 38(8): 2062-2067. doi: 10.11999/JEIT160101.
    董俊, 张广军. 异结构的分数阶超混沌系统函数投影同步及参数辨识[J]. 电子与信息学报, 2013, 35(6): 1371-1375. doi: 10.3724/SP.J.1146.2012.01463.
    DONG Jun and ZHANG Guangjun. Function projective synchronization and parameter identification of different fractional-order hyper-chaotic systems[J]. Journal of Electronics Information Technology, 2013, 35(6): 1371-1375. doi: 10.3724/SP.J.1146.2012.01463.
  • 加载中
计量
  • 文章访问数:  638
  • HTML全文浏览量:  38
  • PDF下载量:  283
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-29
  • 修回日期:  2017-03-01
  • 刊出日期:  2017-08-19

目录

    /

    返回文章
    返回

    官方微信,欢迎关注