高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于TL1范数约束的子空间聚类方法

李海洋 王恒远

李海洋, 王恒远. 基于TL1范数约束的子空间聚类方法[J]. 电子与信息学报, 2017, 39(10): 2428-2436. doi: 10.11999/JEIT170193
引用本文: 李海洋, 王恒远. 基于TL1范数约束的子空间聚类方法[J]. 电子与信息学报, 2017, 39(10): 2428-2436. doi: 10.11999/JEIT170193
LI Haiyang, WANG Hengyuan. Subspace Clustering Method Based on TL1 Norm Constraints[J]. Journal of Electronics and Information Technology, 2017, 39(10): 2428-2436. doi: 10.11999/JEIT170193
Citation: LI Haiyang, WANG Hengyuan. Subspace Clustering Method Based on TL1 Norm Constraints[J]. Journal of Electronics and Information Technology, 2017, 39(10): 2428-2436. doi: 10.11999/JEIT170193

基于TL1范数约束的子空间聚类方法

doi: 10.11999/JEIT170193
基金项目: 

国家自然科学基金(11271297),陕西省自然科学基金(2015JM1020)

Subspace Clustering Method Based on TL1 Norm Constraints

Funds: 

The National Natural Science Foundation of China (11271297), The Natural Science Foundation of Shaanxi Province (2015JM1020)

  • 摘要: 该文将TL1范数应用于子空间聚类的研究中,提出基于TL1范数约束的子空间聚类优化模型。尽管该优化模型是非凸的,在无噪音的情形下,证明了它的最优解为具有块对角结构的系数矩阵,这对随后进行的谱聚类提供了理论保证;在有噪声的情形下,它的约束条件等价于以干净数据为字典的优化模型,因而求解出的系数矩阵提高了聚类的精确度。进一步,利用增广拉格朗日-交替方向乘子方法给出该优化模型的求解方法。实验结果表明,基于TL1范数的子空间聚类方法不仅增强了系数矩阵的稀疏性,而且在聚类精确度,对噪音的鲁棒性方面要优于低秩子空间聚类方法和稀疏子空间聚类方法。
  • [1] ZHANG Tao, TANG Zhenmin, and L Jianyong. Improved algorithm based on low rank representation for subspace clustering[J]. Journal of Electronics Information Technology, 2016, 38(11): 2811-2818. doi: 10.11999/JEIT 160009.
    [2] 张涛, 唐振民, 吕建勇. 一种基于低秩表示的子空间聚类改进算法[J]. 电子与信息学报, 2016, 38(11): 2811-2818. doi:  10.11999/JEIT160009.
    [3] 王卫卫, 李小平, 冯象初, 等. 稀疏子空间聚类综述[J]. 自动化学报, 2015, 41(8): 1373-1384. doi: 10.16383/j.aas.2015. c140891.
    [4] WANG Weiwei, LI Xiaoping, FENG Xiangchu, et al. A survey on sparse subspace clustering[J]. Acta Automatica Sinica, 2015, 41(8): 1373-1384. doi: 10.16383/j.aas.2015. c140891.
    [5] YANG A, WRIGHT J, MA Y, et al. Unsupervised segmentation of natural images via lossy data compression[J]. Computer Vision and Image Understanding, 2008, 110(2): 212-225. doi:  10.1016/j.cviu.2007.07.005.
    [6] WRIGHT J, MAIRAL J, MA Y, et al. Sparse representation for computer vision and pattern recognition[J]. Proceedings of the IEEE, 2010, 98(6): 1031-1044. doi: 10.1109/JPROC. 2010.2044470.
    [7] LI C G, YOU C, and VIDAL R. Structured sparse subspace clustering: A joint affinity learning and subspace clustering framework[J]. IEEE Transactions on Image Processing, 2017, 26(6): 2988-3001. doi:  10.1109/TIP.2017.2691557.
    [8] VIDAL R. Subspace clustering[J]. IEEE Signal Processing Magazine, 2011, 28(2): 52-68. doi: 10.1109/MSP.2010. 939739.
    [9] ELHAMIFAR E and VIDAL R. Sparse subspace clustering [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 2009: 2790-2797. doi:  10.1109/CVPR.2009.5206547.
    [10] ELHAMIFAR E and VIDAL R. Sparse subspace clustering: Algorithm, theory, and applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(11): 2765-2781. doi:  10.1109/TPAMI.2013.57.
    [11] LIU G C, LIN Z C, YAN S C, et al. Robust recovery of subspace structures by low-rank representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 171-184. doi:  10.1109/TPAMI.2012.88.
    [12] LIU G C, LIN Z C, and YU Y. Robust subspace segmentation by low-rank representation[C]. Proceedings of the International Conference on Machine Learning, Haifa, Israel, 2010: 663-670.
    [13] NG A Y, JORDAN M, and WEISS Y. On spectral clustering: Analysis and an algorithm[C]. Proceedings of the Advances in Neural Information Processing Systems, Vancouver, Canada, 2001: 849-856.
    [14] PAN J, MATHIEU S, and HONG L. Efficient dense subspace clustering[C]. IEEE Winter Conference on Applications of Computer Vision, USA, 2014: 461-468. doi:  10.1109/WACV.2014.6836065.
    [15] ZHUANG L S, MA Y, LIN Z C, et al. Non-negative low-rank and sparse graph for semi-supervised learning[C]. IEEE Conference on Computer Vision and Pattern Recognition, Rhode Island, 2012: 2328-2335. doi: 10.1109/CVPR.2012. 6247944.
    [16] PATEL V M, NGUYEN H V, and VIDAL R. Latent space sparse and low-rank subspace clustering[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(4): 691-701. doi:  10.1109/JSTSP.2015.2402643.
    [17] 李波, 卢春园, 冷成财, 等. 基于局部图拉普拉斯约束的鲁棒低秩表示聚类方法[J]. 自动化学报, 2015, 41(11): 1971-1980. doi:  10.16383/j.aas.2015.c150031.
    [18] LI Bo, LU Chunyuan, LENG Chengcai, et al. Robust low rank subspace clustering based on local graph laplace constraint[J]. Acta Automatica Sinica, 2015, 41(11): 1971-1980. doi:  10.16383/j.aas.2015.c150031.
    [19] NIKOLOVA M. Local strong homogeneity of a regularized estimator[J]. SIAM Journal on Applied Mathematics, 2000, 61(2): 633-658. doi:  10.1137/S0036139997327794.
    [20] L J, and FAN Y. A unified approach to model selection and sparse recovery using regularized least squares[J]. The Annals of Statistics, 2009, 37(6A): 3498-3528. doi: 10.1214/ 09-AOS683.
    [21] ZHANG S, YIN P H, and JACK X. Transformed schatten iterative thresholding algorithms for matrix rank minimization and applications[J]. Arxiv Preprint, 2015, 1506. 04444. https://www.researchgate.net/publication/2784138 40.
    [22] ZHANG S and JACK X. Minimization of transformed L1 penalty: Theory, difference of convex function algorithm, and robust application in compressed sensing[J]. Arxiv Preprint, 2016, 1411.5735v3. https://arxiv.org/abs/1411.5735.
    [23] HORN R and JOHNSON C. Topics in Matrix Analysis[M]. Cambridge University Press, 1991: 144-163.
    [24] LIN Z C, CHEN M, and MA Y. The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices[R]. UIUC Technical Report UILU-ENG-09-2215, 2009.
    [25] 吴杰祺, 李晓宇, 袁晓彤, 等. 利用坐标下降实行并行稀疏子空间聚类[J]. 计算机应用, 2016, 36(2): 372-376. doi:  10.11772/j.issn.1001-9081.2016.02.0372.
    [26] WU Jieqi, LI Xiaoyu, YUAN Xiaotong, et al. Parallel sparse subspace clustering via coordinate descent minimization[J]. Journal of Computer Applications, 2016, 36(2): 372-376. doi:  10.11772/j.issn.1001-9081.2016.02.0372.
    [27] VIDAL R and FAVARO P, A closed form solution to robust subspace estimation and clustering[C]. IEEE Conference on Computer Vision and Pattern Recognition, USA, 2011, 1801-1807. doi:  10.11091/CVPR.2011.5995365.
    [28] BERTSEKAS D. Constrained Optimization and Lagrange Multiplier Methods[M]. Belmont, MA, USA: Athena Scientific, 1996: 326-340.
    [29] CANDES E J, LI X D, MA Y, et al. Robust principal component analysis[J]. Journal of the ACM, 2010, 58(3): 11. doi:  10.1145/1970392.1970395.
    [30] GEORGHIADES A, BELHUMEUR P, and KRIEGMAN D. From few to many: Illumination cone models for face recognition under variable lighting and pose[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 23(6): 643-660. doi:  10.1109/34.927464.
    [31] YAN J Y and POLLEYFEYS M. A general framework for motion segmentation: Independent, articulated, rigid, non-rigid, degenerate and non-degenerate[C]. Proceedings of the European Conference on Computer Vision, Graz, Austria, 2006: 94-106. doi:  10.1007/11744085_8.
    [32] FENG J S, LIN Z C, XU H, et al. Robust subspace segmentation with block-diagonal prior[C]. Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 3818-3825. doi:  10.1109/CVPR.2014.482.
    [33] VIDAL R and FAVARO P. Low-rank subspace clustering (LRSC)[J]. Pattern Recognition Letters, 2014, 43: 47-61. doi:  10.1016/j.patrec.2013.08.006.
  • [1] 李骜, 刘鑫, 陈德运, 张英涛, 孙广路.  基于低秩表示的鲁棒判别特征子空间学习模型, 电子与信息学报. doi: 10.11999/JEIT190164
    [2] 孟智超, 卢景月, 张帅钦, 张磊, 王虹现.  单通道合成孔径雷达抗调频斜率失配干扰新方法, 电子与信息学报. doi: 10.11999/JEIT190687
    [3] 王洪雁, 于若男.  基于稀疏和低秩恢复的稳健DOA估计方法, 电子与信息学报. doi: 10.11999/JEIT190263
    [4] 王洪雁, 张海坤.  动态背景下基于低秩及稀疏分解的动目标检测方法, 电子与信息学报. doi: 10.11999/JEIT190452
    [5] 汪玲, 朱栋强, 马凯莉, 肖卓.  空间目标卡尔曼滤波稀疏成像方法, 电子与信息学报. doi: 10.11999/JEIT170319
    [6] 刘凯, 冯辉, 杨涛, 胡波.  上行3D-MIMO中利用结构稀疏低秩特性的信道估计算法, 电子与信息学报. doi: 10.11999/JEIT170399
    [7] 欧伟枫, 杨春玲, 戴超.  一种视频压缩感知中两级多假设重构及实现方法, 电子与信息学报. doi: 10.11999/JEIT161142
    [8] 叶茂, 刘文芬.  基于快速地标采样的大规模谱聚类算法, 电子与信息学报. doi: 10.11999/JEIT160260
    [9] 李少东, 杨军, 陈文峰, 马晓岩.  基于压缩感知理论的雷达成像技术与应用研究进展, 电子与信息学报. doi: 10.11999/JEIT150874
    [10] 张涛, 唐振民, 吕建勇.  一种基于低秩表示的子空间聚类改进算法, 电子与信息学报. doi: 10.11999/JEIT160009
    [11] 邓赵红, 张江滨, 蒋亦樟, 史荧中, 王士同.  基于模糊子空间聚类的〇阶L2型TSK模糊系统, 电子与信息学报. doi: 10.11999/JEIT150074
    [12] 王斯琪, 冯象初, 张瑞, 李小平.  基于最大范数的低秩稀疏分解模型, 电子与信息学报. doi: 10.11999/JEIT150468
    [13] 席峰, 陈胜垚, 刘中.  混沌模拟信息转换基于多射法的稀疏信号重构, 电子与信息学报. doi: 10.3724/SP.J.1146.2012.00905
    [14] 占荣辉, 胡杰民, 张军.  基于压缩感知的二维GTD模型参数估计方法, 电子与信息学报. doi: 10.3724/SP.J.1146.2012.00780
    [15] 陈胜垚, 席峰, 刘中.  基于混沌压缩感知的稀疏时变信号在线估计, 电子与信息学报. doi: 10.3724/SP.J.1146.2011.00620
    [16] 寇波, 江海, 刘磊, 张冰尘.  基于压缩感知的SAR抑制旁瓣技术研究, 电子与信息学报. doi: 10.3724/SP.J.1146.2010.00103
    [17] 吴锐, 黄剑华, 唐降龙, 刘家锋.  基于灰度直方图和谱聚类的文本图像二值化方法, 电子与信息学报. doi: 10.3724/SP.J.1146.2008.01283
    [18] 郭伟, 王士同, 程科, 韩斌.  视觉采样聚类方法VSC, 电子与信息学报.
    [19] 石红, 沈毅, 刘志言.  基于粗糙集和模糊聚类的超谱波段约简, 电子与信息学报.
    [20] 陈辉, 王永良.  秩-1子空间跟踪算法, 电子与信息学报.
  • 加载中
  • 计量
    • 文章访问数:  450
    • HTML全文浏览量:  37
    • PDF下载量:  221
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-03-03
    • 修回日期:  2017-06-27
    • 刊出日期:  2017-10-19

    目录

      /

      返回文章
      返回

      官方微信,欢迎关注