高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航磁全轴总场梯度系统补偿算法研究

吴佩霖 张群英 李光 刘丽华 方广有

吴佩霖, 张群英, 李光, 刘丽华, 方广有. 航磁全轴总场梯度系统补偿算法研究[J]. 电子与信息学报, 2017, 39(12): 3030-3038. doi: 10.11999/JEIT170233
引用本文: 吴佩霖, 张群英, 李光, 刘丽华, 方广有. 航磁全轴总场梯度系统补偿算法研究[J]. 电子与信息学报, 2017, 39(12): 3030-3038. doi: 10.11999/JEIT170233
WU Peilin, ZHANG Qunying, LI Guang, LIU Lihua, FANG Guangyou. Research on Compensation Algorithm of Three Axis Gradient Aeromagnetic Prospecting System[J]. Journal of Electronics and Information Technology, 2017, 39(12): 3030-3038. doi: 10.11999/JEIT170233
Citation: WU Peilin, ZHANG Qunying, LI Guang, LIU Lihua, FANG Guangyou. Research on Compensation Algorithm of Three Axis Gradient Aeromagnetic Prospecting System[J]. Journal of Electronics and Information Technology, 2017, 39(12): 3030-3038. doi: 10.11999/JEIT170233

航磁全轴总场梯度系统补偿算法研究

doi: 10.11999/JEIT170233
基金项目: 

国家重大科研装备研制项目(ZDYZ2012-1-03)

Research on Compensation Algorithm of Three Axis Gradient Aeromagnetic Prospecting System

Funds: 

RD of Key Instruments and Technologies of China (ZDYZ2012-1-03)

  • 摘要: 航空磁法勘探是一种高效、便捷的地球物理勘探方法。使用多个光泵磁力仪实现全轴梯度测量是航空磁法勘探中的一种重要手段。该文针对无人机飞行平台设计了一种航磁全轴总场梯度测量系统,并提出使用前馈网络的方法来实现航磁数据的补偿。系统通过4个光泵磁力仪获得全轴总场梯度数据,经过前馈网络实现数据补偿后,全轴总场梯度数据补偿质量的提升比分别为15.2, 4.7和5.9,数据峰值信噪比的提升分别为17.1 dB, 6.5 dB和6.5 dB,交叉标定系数表明前馈网络具有很好的泛化性能。实验结果验证了该文采用的全轴梯度系统和数据补偿方法的正确性和有效性,能够有效地应用于高精度航磁勘探领域。
  • [1] NABIGHIAN M N, GRAUCH V J S, HANSEN R O, et al. The historical development of the magnetic method in exploration[J]. Geophysics, 2005, 70(6): 33ND-61ND. doi:  10.1190/1.2133784.
    [2] HOOD P. History of aeromagnetic surveying in Canada[J]. Leading Edge, 2012, 26(11): 1384-1392. doi: 10.1190/1. 2805759.
    [3] DOLL W E, GAMEY T J, BELL D T, et al. Historical development and performance of airborne magnetic and electromagnetic systems for mapping and detection of unexploded ordnance[J]. Journal of Environmental Engineering Geophysics, 2012, 17(1): 1-17. doi: 10.2113/ JEEG17.1.1.
    [4] NORIEGA G. Aeromagnetic compensation in gradiometry- performance, model stability, and robustness[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(1): 117-121. doi:  10.1109/LGRS.2014.2328436.
    [5] HARDWICK C D. Non-oriented cesium sensors for airborne magnetometry and gradiometry[J]. Exploration Geophysics, 1984, 27(4): 266-267. doi:  10.1071/EG984266d.
    [6] FORRESTER R, HUQ M S, AHMADI M, et al. Magnetic signature attenuation of an unmanned aircraft system for aeromagnetic survey[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(4): 1436-1446. doi: 10.1109/TMECH. 2013.2285224.
    [7] ZHANG B, GUO Z, and QIAO Y. A simplified aeromagnetic compensation model for low magnetism UAV platform[C]. IEEE Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 2011: 3401-3404. doi: 10.1109/ IGARSS.2011.6049950.
    [8] HARDWICK C D. Aeromagnetic gradiometry in 1995[J]. Exploration Geophysics, 1996, 27(1): 1-11. doi: 10.1071/ EG996001.
    [9] NELSON J B. Aeromagnetic noise during low-altitude flights over the scotian shelf: DRDC-ATLANTIC-TM-2002-089[R]. Dartmouth NS: Defence Research Development Canada Atlantic, 2002, 1-40.
    [10] TOLLES W E and MINEOLA N Y. Compensation of aircraft magnetic fields[P]. US, Patent, US2692970, 1954.
    [11] TOLLES W E and MINEOLA N Y. Magnetic field compensation system[P]. US, Patent, US2706801, 1955.
    [12] LELIAK P. Identification and evaluation of magnetic-field sources of magnetic airborne detector equipped aircraft[J]. IRE Transactions on Aerospace and Navigational Electronics, 1961, 8(3): 95-105. doi:  10.1109/TANE3.1961.4201799.
    [13] LEACH B W. Aeromagnetic compensation as a linear regression problem[J]. Information Linkage Between Applied Mathematics and Industry, 1980, 2: 139-161. doi: 10.1016/ B978-0-12-628750-9.50017-6.
    [14] HARDWICK C D. Important design considerations for inboard airborne magnetic gradiometers[J]. Geophysics, 1984: 49(11): 2004-2018. doi:  10.1190/1.1441611.
    [15] NELSON J B. Aircraft magnetic noise sources[C]. 8th International Congress of the Brazilian Geophysical Society, Brazilian, 2003: 41506.
    [16] NELSON J B. Aeromagnetic noise from magnetometers and data acquisition systems[C]. 8th International Congress of the Brazilian Geophysical Society, Brazilian, 2003: 41507.
    [17] NELSON J B. Predicting in-flight MAD noise from ground measurements: DREA-TM-2001-112[R]. Dartmouth NS: Defence Research Establishment Atlantic, 2002, 1-26.
    [18] 骆遥, 段树岭, 王金龙, 等. AGS-863航磁全轴梯度勘查系统关键性指标测试[J]. 物探与化探, 2011, 35(5): 620-625.
    [19] LUO Yao, DUAN Shuling, WANG Jinlong, et al. Key indicators testing for AGS-863 three axis airborne magnetic gradiometer[J]. Geophysical and Geochemical Exploration, 2011, 35(5): 620-625.
    [20] 骆遥, 吴美平. 位场向下延拓的最小曲率方法[J]. 地球物理学报, 2016, 59(1): 240-251. doi:  10.6038/cjg20160120.
    [21] LUO Yao and WU Meiping. Minimum curvature method for downward continuation of potential field data[J]. Chinese Journal of Geophysics, 2016: 59(1): 240-251. doi: 10.6038/ cjg20160120.
    [22] 王林飞, 薛典军, 段树岭, 等. 航磁软补偿动作规范性评价[J]. 物探与化探, 2016: 40(2): 365-369. doi: 10.11720/wtyht.2016. 2.21.
    [23] WANG Linfei, XUE Dianjun, DUAN Shuling, et al. The normative evaluation of aeromagnetic compensation action[J]. Geophysical and Geochemical Exploration, 2016: 40(2): 365-369. doi:  10.11720/wtyht.2016.2.21.
    [24] 赵建扬, 林春生, 贾文抖, 等. 直升机平台背景磁干扰建模与求解[J]. 华中科技大学学报(自然科学版), 2016, 44(2): 21-25. doi:  10.13245/j.hust.160205.
    [25] ZHAO Jianyang, LIN Chunsheng, JIA Wendou, et al. Helicopter platform background magnetic interference modeling and solution[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2016, 44(2): 21-25. doi:  10.13245/j.hust.160205.
    [26] 赵建扬, 林春生, 孙玉绘, 等. 直升机平台背景磁干扰建模与特性分析[J]. 海军工程大学学报, 2016, 28(1): 36-40. doi:  10.7495/j.issn.1009-3486.2016.01.008.
    [27] ZHAO Jianyang, LIN Chunsheng, SUN Yunhui, et al. Modeling and characterization of helicopter platform background magnetic interference[J]. Journal of Naval University of Engineering, 2016, 28(1): 36-40. doi: 10.7495/ j.issn.1009-3486.2016.01.008.
    [28] 张宁, 赵建扬, 林春生, 等. 直升机平台背景磁干扰小信号模型求解与补偿[J]. 电子学报, 2017, 45(1): 83-88. doi: 10.3969/ j.issn.0372-2112.2017.01.012.
    [29] ZHANG Ning, ZHAO Jianyang, LIN Chunsheng, et al. Helicopter platform background magnetic interference small signal model solving and compensation[J]. Acta Electronica Sinica, 2017, 45(1): 83-88. doi: 10.3969/j.issn.0372-2112.2017. 01.012.
  • [1] 武迎春, 王玉梅, 王安红, 赵贤凌.  基于边缘增强引导滤波的光场全聚焦图像融合, 电子与信息学报. doi: 10.11999/JEIT190723
    [2] 闵富红, 王耀达, 窦一平.  含励磁环节的分数阶电力系统混沌振荡分析与控制, 电子与信息学报. doi: 10.11999/JEIT161398
    [3] 余淮, 杨文.  一种无人机航拍影像快速特征提取与匹配算法, 电子与信息学报. doi: 10.11999/JEIT150676
    [4] 直升机起降中无线紫外光喷泉码引导方法研究, 电子与信息学报. doi: 10.11999/JEIT150004
    [5] 贾云峰, 吴亮, 李红, 魏嘉利, 胡修, 马超.  直升机中电磁耦合薄弱路径的确定方法, 电子与信息学报. doi: 10.3724/SP.J.1146.2013.00587
    [6] 李东, 廖桂生, 王威, 徐青, 党博.  直升机载调频连续波旋转式SAR信号分析与成像算法研究, 电子与信息学报. doi: 10.3724/SP.J.1146.2012.01689
    [7] 赵波, 张晓娟, 方广有.  一种新型超宽带磁天线, 电子与信息学报. doi: 10.3724/SP.J.1146.2007.01952
    [8] 邹峰, 薛谦忠, 刘濮鲲.  大回旋电子注双磁会切电子枪的数值模拟, 电子与信息学报. doi: 10.3724/SP.J.1146.2007.00329
    [9] 李亚超, 周峰, 邢孟道, 保铮.  一种直升机的舰船Dechirp实测数据SAR成像方法, 电子与信息学报. doi: 10.3724/SP.J.1146.2005.01535
    [10] 霍小林, 楼正国, 李军, 汪元美.  基于最小偶极子数解的脑磁定位方法, 电子与信息学报.
    [11] 陈建文, 王永良, 皇甫堪, 周良柱.  直升机载战场侦察雷达空时自适应处理实用方法研究, 电子与信息学报.
    [12] 鲁佩菊.  均匀磁聚焦和周期磁聚焦部分屏蔽流过渡区的设计, 电子与信息学报.
    [13] 赵正予.  ULF地球物理信号偏振状态的数字处理, 电子与信息学报.
    [14] 黄虎坤, 黄得星.  用一种非晶软磁薄膜为芯制成的磁探测器的分辨率研究, 电子与信息学报.
    [15] 黄得星.  双注入型磁敏二极管的设计, 电子与信息学报.
    [16] 杨先称, 金如良.  用克尔磁光效应对(Sm、Gd、Er)Co5磁畴结构的研究, 电子与信息学报.
    [17] 赵立群, 邢峰.  优质铁氧体微带移相器设计中的磁参数, 电子与信息学报.
    [18] 伍始一.  光泵CF4 16微米激光器, 电子与信息学报.
    [19] 张荫钦.  关于磁控注入式电子枪的噪声问题, 电子与信息学报.
    [20] 孙克, 章志英, 罗河烈.  包钴包亚铁-Fe2O3高矫顽力磁粉的试制, 电子与信息学报.
  • 加载中
  • 计量
    • 文章访问数:  426
    • HTML全文浏览量:  35
    • PDF下载量:  235
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-03-20
    • 修回日期:  2017-09-01
    • 刊出日期:  2017-12-19

    目录

      /

      返回文章
      返回

      官方微信,欢迎关注