高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进压缩感知的缺损光纤Bragg光栅传感信号修复方法

陈勇 吴春婷 刘焕淋

陈勇, 吴春婷, 刘焕淋. 基于改进压缩感知的缺损光纤Bragg光栅传感信号修复方法[J]. 电子与信息学报, 2018, 40(2): 386-393. doi: 10.11999/JEIT170424
引用本文: 陈勇, 吴春婷, 刘焕淋. 基于改进压缩感知的缺损光纤Bragg光栅传感信号修复方法[J]. 电子与信息学报, 2018, 40(2): 386-393. doi: 10.11999/JEIT170424
CHEN Yong, WU Chunting, LIU Huanlin. A Repaired Algorithm Based on Improved Compressed Sensing to Repair Damaged Fiber Bragg Grating Sensing Signal[J]. Journal of Electronics and Information Technology, 2018, 40(2): 386-393. doi: 10.11999/JEIT170424
Citation: CHEN Yong, WU Chunting, LIU Huanlin. A Repaired Algorithm Based on Improved Compressed Sensing to Repair Damaged Fiber Bragg Grating Sensing Signal[J]. Journal of Electronics and Information Technology, 2018, 40(2): 386-393. doi: 10.11999/JEIT170424

基于改进压缩感知的缺损光纤Bragg光栅传感信号修复方法

doi: 10.11999/JEIT170424
基金项目: 

国家自然科学基金(61071117),重庆市研究生科研创新项目(CYS17235)

A Repaired Algorithm Based on Improved Compressed Sensing to Repair Damaged Fiber Bragg Grating Sensing Signal

Funds: 

The National Natural Science Foundation of China (61071117), The Graduate Student Research Innovation Project of Chongqing (CYS17235)

  • 摘要: 光纤光栅传感在实际的应用中,存在采样信号数据丢失问题,该文提出一种改进重构算法的压缩感知信号修复方法。根据缺损信号特征,选取与之匹配的观测矩阵与稀疏字典。基于压缩感知重构算法,提出匹配光纤布拉格光栅(FBG)信号特征的自适应阈值函数,同时增设阈值判决条件。分析了信号修复与传感测量精度的关系,采用重建信号的寻峰误差来验证信号的修复效果。仿真结果显示,在FBG光谱数据缺失30%的情况下,恢复信号的平均相对误差为10-6;均方根误差为0.0707,比对比算法低0.0232~0.1159;且系统平均运行时间远低于对比算法,表明采用该文算法修复缺损的FBG传感信号具有较高的重构精度与较好的实用性。
  • [1] LI Jianzhi, XU Longxiang, and KINZO Kishida. FBG-based positioning method for BOTDA sensing[J]. IEEE Sensors Journal, 2016, 16(13): 5236-5242. doi: 10.1109/JSEN.2016. 2556748.
    [2] CHEN W P, SHIH F H, TSENG P J, et al. Application of a packaged fiber Bragg grating sensor to outdoor optical fiber cabinets for environmental monitoring[J]. IEEE Sensors Journal, 2015, 15(2): 734-741. doi: 10.1109/JSEN.2014. 2353040.
    [3] 蒋善超, 王静, 隋青美, 等. 基于压缩感知算法的光栅光谱重构及其应用特性研究[J]. 光学学报, 2014, 34(8): 322-326. doi:  10.3788/CJL201542.0805008.
    [4] JIANG Shanchao, WANG Jing, SUI Qingmei, et al. Research on grating spectrum reconstruction based on compressed sensing and its application characteristics[J]. Acta Optica Sinica, 2014, 34(8): 322-326. doi: 10.3788/CJL201542. 0805008.
    [5] DING L Y, ZHOU C, DENG Q X, et al. Real-time safety early warning system for cross passage construction in Yangtze Riverbed Metro Tunnel based on the internet of things[J]. Automation in Construction, 2013, 36: 25-37. doi:  10.1016/j.autcon.2013.08.017.
    [6] HU Haixiao, LI Shuxin, WANG Jihui, et al. FBG-based real-time evaluation of transverse cracking in cross-ply laminates[J]. Composite Structures, 2016, 138: 151-160. doi:  10.1016/j.compstruct.2015.11.037.
    [7] SAI Ji, SUN Yajie, and SHEN Jian. A method of data recovery based on compressive sensing in wireless structural health monitoring[J]. Mathematical Problems in Engineering, 2014: 546478. doi:  10.1155/2014/546478.
    [8] 张新鹏, 胡茑庆, 程哲, 等. 基于压缩感知的振动数据修复方法[J]. 物理学报, 2014, 63(20): 200506. doi: 10.7498/aps.63. 200506.
    [9] ZHANG Xinpeng, HU Niaoqing, CHENG Zhe, et al. Vibration data recovery based on compressed sensing[J]. Acta Physica Sinica, 2014, 63(20): 200506. doi: 10.7498/aps.63. 200506.
    [10] 余翔, 郑寒冰, 曾银强. 基于压缩感知的自适应加权匹配追踪算法[J]. 重庆邮电大学学报(自然科学版), 2016, 28(5): 707-712. doi:  10.3979/j.issn.1673-825X.2016.05.015.
    [11] YU Xiang, ZHENG Hanbing, and ZENG Yinqiang. Adaptive weighting matching pursuit algorithm based on compressed sensing[J]. Journal of Chongqing University of Posts and Telecommunication (Natural Science Edition), 2016, 28(5): 707-712. doi: 10.3979/j.issn.1673-825X.2016.05. 015.
    [12] 姜力茹, 许云达, 高猛. 基于压缩感知的塔康方位估计算法[J].重庆邮电大学学报(自然科学版), 2017, 29(3): 365-370. doi:  10.3979/j.issn.1673-825X.2017.03.013.
    [13] JIANG Liru, XU Yunda, and GAO Meng. TACAN azimuth estimation algorithm based on compressed sensing[J]. Journal of Chongqing University of Posts and Telecommunication (Natural Science Edition), 2017, 29(3): 365-370. doi:  10.3979/j.issn.1673-825X.2017.03.013.
    [14] YUAN Mei, WANG Shujuan, DONG Shaopeng, et al. Reconstruction of undersampled damage monitoring signal based on compressed sensing[C]. Proceedings of 2014 IEEE Chinese Guidance, Navigation and Control Conference Yantai, China, 2014: 2443-2448. doi: 10.1109/CGNCC.2014. 7007553.
    [15] CANDES E J and TAO T. Decoding by linear programming [J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215. doi:  10.1109/TIT.2005.858979.
    [16] BARANIUK R G. Compressive sensing[J]. IEEE Signal Processing Magazine, 2007, 24(4): 118-121. doi: 10.1109/MSP. 2007.4286571.
    [17] MALLAT S G and ZHANG Z F. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415. doi:  10.1109/78.258082.
    [18] NEEDELL D and VERSHYNIN R. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 310-316. doi: 10.1109 /JSTSP.2010.2042412.
    [19] CHEN Yong, ZHANG Yulan, LIU Huanlin, et al. FBG sensing signal dealing with improved orthogonal subspace pursuit method[J]. Optik-International Journal for Light and Electron Optics, 2015, 126(21): 3303-3309. doi: 10.1016/ j.ijleo.2015.08.025.
    [20] WANG Rui, ZHANG Jinglei, REN Suli, et al. A reducing iteration orthogonal matching pursuit algorithm for compressive sensing[J]. Tsinghua Science and Technology, 2016, 21(1): 71-79. doi:  10.1109/TST.2016.7399284.
    [21] THONG T D, LU G, NAM N, et al. Sparsity adaptive matching pursuit algorithm for practical compressed sensing[C]. Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, California, 2008, 10: 581-587. doi:  10.1109/ACSSC.2008.5074472.
    [22] LI Mingyu, YANG Zhenxing, ZHANG Zhongming, et al. Sparsity adaptive estimation of memory polynomial based models for power amplifier behavioral modeling[J]. IEEE Microwave and Wireless Components Letters, 2016, 26(5): 370-372. doi:  10.1109/LMWC.2016.2549024.
    [23] 唐朝伟, 王雪锋, 杜永光. 一种稀疏度自适应分段正交匹配追踪算法[J]. 中南大学学报(自然科学版), 2016, 47(3): 784-792. doi:  10.11817/j.issn.1672-7207.2016.03.011.
    [24] TANG Chaowei, WANG Xuefeng, and DU Yongguang. A sparsity adaptive stagewise orthogonal matching pursuit algorithm[J]. Journal of Central South University (Science and Technology), 2016, 47(3): 784-792. doi: 10.11817/j.issn. 1672-7207.2016.03.011.
    [25] DONOHO D L, TSAIG Y, DRORI I, et al. Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2012, 58(2): 1094-1121.
    [26] 周亚同, 王丽莉, 唐红梅. 基于压缩感知的稀疏度自适应图像修复[J]. 铁道学报, 2014, 36(9): 52-59. doi: 10.3969/j.issn. 1001-8361.2014.09.008.
    [27] ZHOU Yatong, WANG Lili, and TANG Hongmei. Sparsity adaptive algorithm for image inpainting based on compressive sensing[J]. Journal of the China Railway Society, 2014, 36(9): 52-59. doi:  10.3969/j.issn.1001-8361.2014.09.008.
    [28] 吴迪, 王奎民, 赵玉新, 等. 分段正则化正交匹配追踪算法[J]. 光学精密工程, 2014, 22(5): 1395-1402. doi: 10.3788/OPE. 20142205.1395.
    [29] WU Di, WANG Kuimin, ZHAO Yuxin, et al. Stagewise regularized orthogonal matching pursuit algorithm[J]. Optics and Precision Engineering, 2014, 22(5): 1395-1402. doi:  10.3788/OPE.20142205.1395.
    [30] WANG Zhihong, SUN Guiling, ZHANG Ying, et al. Research on iterative thresholding orthogonal matching pursuit reconstruction algorithm based on sparsity adaptive[J]. Journal of Computational Information Systems, 2014, 10(10): 4339-4346. doi:  10.12733/jcis10336.
    [31] CHEN Yong, YANG Kai, and LIU Huanlin. Self-adaptive multi-peak detection algorithm for FBG sensing signal[J]. IEEE Sensors Journal, 2016, 16(8): 2658-2665. doi: 10.1109/ JSEN.2016.2516038.
    [32] 陈勇, 杨凯, 刘焕淋. 多峰光纤布拉格光栅传感信号的自适应寻峰处理[J]. 中国激光, 2015, 42(8): 184-189. doi: 10.3788/ CJL201542.0805008.
    [33] CHEN Yong, YANG Kai, and LIU Huanlin. A Self-adaptive peak detection algorithm to process multi-peak fiber Bragg grating sensing signal[J]. Chinese Journal of Lasers, 2015, 42(8): 184-189. doi:  10.3788/CJL201542.0805008.
  • [1] 申滨, 吴和彪, 崔太平, 陈前斌.  基于最优索引广义正交匹配追踪的非正交多址系统多用户检测, 电子与信息学报. doi: 10.11999/JEIT190270
    [2] 左家骏, 杨瑞娟, 李晓柏, 李东瑾.  基于索引调制OFDM雷达通信共享信号压缩感知方法研究, 电子与信息学报. doi: 10.11999/JEIT190740
    [3] 王健明, 陈建华.  使用能量匹配的监控视频自适应速率压缩感知, 电子与信息学报. doi: 10.11999/JEIT190750
    [4] 欧国建, 蒋清平, 秦长春.  基于子空间的三阶多项式相位信号快速稀疏分解算法, 电子与信息学报. doi: 10.11999/JEIT170593
    [5] 金艳, 武艳凤, 姬红兵.  基于稳定分布噪声稀疏性及最优匹配的跳频信号参数估计, 电子与信息学报. doi: 10.11999/JEIT161397
    [6] 王学伟, 董晓璇, 袁瑞铭, 周丽霞, 王婧, 王琳.  压缩感知伪随机动态功率信号的电能测量方法, 电子与信息学报. doi: 10.11999/JEIT160416
    [7] 李应, 陈秋菊.  基于优化的正交匹配追踪声音事件识别, 电子与信息学报. doi: 10.11999/JEIT160120
    [8] 王伟, 张斌, 李欣.  基于混合匹配追踪算法的MIMO雷达稀疏成像方法, 电子与信息学报. doi: 10.11999/JEIT151453
    [9] 吴建宁, 徐海东, 王珏.  基于过完备字典稀疏表示的多通道脑电信号压缩感知联合重构, 电子与信息学报. doi: 10.11999/JEIT151079
    [10] 王伟, 唐伟民, 王犇, 雷舒杰.  基于贝叶斯压缩感知的复数稀疏信号恢复方法, 电子与信息学报. doi: 10.11999/JEIT151056
    [11] 王锋, 孙桂玲, 张健平, 何静飞.  基于压缩感知的加速前向后向匹配追踪算法, 电子与信息学报. doi: 10.11999/JEIT151422
    [12] 程艳合*, 杨文革.  压缩域直扩测控通信信号伪码跟踪方法研究, 电子与信息学报. doi: 10.11999/JEIT141654
    [13] 张冰尘, 戴博伟.  一种基于随机滤波的神经动作电位信号压缩感知采样方法, 电子与信息学报. doi: 10.3724/SP.J.1146.2012.01497
    [14] 杨真真, 杨震.  压缩感知中基于快速交替方向乘子法的l0-正则化信号重构, 电子与信息学报. doi: 10.3724/SP.J.1146.2012.00921
    [15] 马宁, 王建新, 董宁斐.  基于正交匹配追踪的欠采样LFM信号参数估计, 电子与信息学报. doi: 10.3724/SP.J.1146.2012.01399
    [16] 张巧玲, 吴绍华, 张钦宇, 刘良.  基于量化压缩感知的IR-UWB接收信号重构研究, 电子与信息学报. doi: 10.3724/SP.J.1146.2012.00133
    [17] 刘记红, 黎湘, 徐少坤, 庄钊文.  基于改进正交匹配追踪算法的压缩感知雷达成像方法, 电子与信息学报. doi: 10.3724/SP.J.1146.2011.01097
    [18] 高悦, 陈砚圃, 闵刚, 杜佳.  基于线性预测分析和差分变换的语音信号压缩感知, 电子与信息学报. doi: 10.3724/SP.J.1146.2011.01001
    [19] 高磊, 宿绍莹, 陈曾平.  宽带雷达Chirp回波的正交稀疏表示及其在压缩感知中的应用, 电子与信息学报. doi: 10.3724/SP.J.1146.2011.00252
    [20] 刘亚新, 赵瑞珍, 胡绍海, 姜春晖.  用于压缩感知信号重建的正则化自适应匹配追踪算法, 电子与信息学报. doi: 10.3724/SP.J.1146.2009.01623
  • 加载中
  • 计量
    • 文章访问数:  840
    • HTML全文浏览量:  32
    • PDF下载量:  102
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-05-09
    • 修回日期:  2017-07-21
    • 刊出日期:  2018-02-19

    目录

      /

      返回文章
      返回

      官方微信,欢迎关注