[1]
|
JAIN A K, MURTY M N, and FLYNN P J. Data clustering: A review[J]. ACM Computing Surveys, 1999, 31(3): 264-323. |
[2]
|
JAIN A K. Data clustering: 50 years beyond K-means[J]. Pattern Recognition Letters, 2010, 31(8): 651-666. |
[3]
|
汪晓锋, 刘功申, 李建华. 基于模糊聚类的多分辨率社区发现方法[J]. 电子与信息学报, 2017, 39(9): 2033-2039. doi: 10.11999/JEIT161116. |
[4]
|
WANG Xiaofeng, LIU Gongshen, and LI Jianhua. Multiresolution community detection based on fuzzy clustering[J]. Journal of Electronics Information Technology, 2017, 39(9): 2033-2039. doi: 10.11999/JEIT 161116. |
[5]
|
STREHL A and GHOSH J. Cluster ensembles: A knowledge reuse framework for combining multiple partitions[J]. Journal of Machine Learning Research, 2002, 3: 583-617. |
[6]
|
ZHOU Zhihua and TANG Wei. Clusterer ensemble[J]. Knowledge-Based Systems, 2006, 19(1): 77-83. |
[7]
|
罗会兰, 孔繁胜, 李一啸. 聚类集成中的差异性度量研究[J]. 计算机学报, 2007, 30(8): 1315-1323. |
[8]
|
LUO Huilan, KONG Fansheng, and LI Yixiao. An analysis of diversity measures in clustering ensembles[J]. Chinese Journal of Computers, 2007, 30(8): 1315-1323. |
[9]
|
WU Junjie, LIU Hongfu, XIONG Hui, et al. K-means based consensus clustering: A unified view[J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(1): 155-169. doi: 10.1109/TKDE.2014.2316512. |
[10]
|
FRED A and LOURENGO A. Cluster ensemble methods: From single clusterings to combined solutions[J]. Studies in Computational Intelligence, 2008, 126(1): 3-30. |
[11]
|
XU Sen, CHAN Kungsic, Gao Jun, et al. An integrated K-means?Laplacian cluster ensemble approach for document datasets[J]. Neurocomputing, 2016, 214(6): 495-507. doi: 10.1016/j.neucom.2016.06.034. |
[12]
|
YU Zhiwen, LI Le, LIU Jiming, et al. Adaptive noise immune cluster ensemble using affinity propagation[J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(12): 3176-3189. doi: 10.1109/TKDE.2015.2453162. |
[13]
|
褚睿鸿, 王红军, 杨燕, 等. 基于密度峰值的聚类集成[J]. 自动化学报, 2016, 42(9): 1401-1412. doi: 10.16383/j.aas.2016. c150864. |
[14]
|
CHU Ruihong, WANG Hongjun, YANG Yan, et al. Clustering ensemble based on density peaks[J]. Acta Automatica Sinica, 2016, 42(9): 1401-1412. doi: 10.16383/ j.aas.2016.c150864. |
[15]
|
BERIKOV V and PESTUNOV I. Ensemble clustering based on weighted co-association matrices: Error bound and convergence properties[J]. Pattern Recognition, 2017, 63: 427-436. doi: 10.1016/j.patcog.2016.10.017. |
[16]
|
MAATEN L V D and HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(11): 2579-2605. |
[17]
|
MAATEN L V D. Learning a parametric embedding by preserving local structure[C]. Proceedings of the 12th International Conference on Artificial Intelligence and Statistics, Clearwater Beach, Florida, USA, 2009: 384-391. |
[18]
|
MAATEN L V D. Accelerating t-SNE using tree-based algorithms[J]. Journal of Machine Learning Research, 2014, 15(1): 3221-3245. |
[19]
|
SALTON G and BUCKLEY C. Term-weighting approaches in automatic text retrieval[J]. Information Processing and Management, 1998, 24(5): 513-523. |
[20]
|
FERN X Z and LIN W. Cluster ensemble selection[J]. Statistical Analysis Data Mining, 2008, 1(3): 128-141. |
[21]
|
ZHAO Xingwang, LIANG Jiye, and DANG Chuangyin. Clustering ensemble selection for categorical data based on internal validity indices[J]. Pattern Recognition, 2017, 69(4): 150-168. doi: 10.1016/j.patcog.2017.04.019. |