## 留言板

 引用本文: 范九伦, 雷博. 倒数粗糙熵图像阈值化分割算法[J]. 电子与信息学报, 2020, 42(1): 214-221.
Jiulun FAN, Bo LEI. Image Thresholding Segmentation Method Based on Reciprocal Rough Entropy[J]. Journal of Electronics and Information Technology, 2020, 42(1): 214-221. doi: 10.11999/JEIT190559
 Citation: Jiulun FAN, Bo LEI. Image Thresholding Segmentation Method Based on Reciprocal Rough Entropy[J]. Journal of Electronics and Information Technology, 2020, 42(1): 214-221.

## 倒数粗糙熵图像阈值化分割算法

##### doi: 10.11999/JEIT190559

###### 通讯作者: 雷博　leileibo@xupt.edu.cn
• 中图分类号: TP391.4

## Image Thresholding Segmentation Method Based on Reciprocal Rough Entropy

Funds: The National Natural Science Foundation of China(61671377, 61571361, 61601362), The Project of New Star Team of Xi’an University of Posts & Telecommunications (xyt2016-01)
• 摘要: 基于粗糙集理论的粗糙熵阈值法不需要图像之外的先验信息。粗糙熵阈值法需要解决两个问题，一是图像信息不完整性的度量，二是图像的粒化。该文基于倒数信息熵，提出一种倒数粗糙熵用来度量图像中信息的不完整性。为了更好地对图像进行粒化，采用一种基于均匀性直方图的粒子选取方式。该文提出的倒数粗糙熵表述简洁，计算简单。实验验证了该文方法的有效性。
• 图  1  cameraman 图像的直方图和均匀性直方图

图  2  均匀性直方图及最小峰宽度

图  3  NDT image1分割结果

图  4  NDT image2分割结果

图  5  OTCBVS\库5\irw02\000215分割结果

图  6  OTCBVS\库5\irw06\000225分割结果

•  [1] SEZGIN M and SANKUR B. Survey over image thresholding techniques and quantitative performance evaluation[J]. Journal of Electronic Imaging, 2004, 13(1): 146–165. [2] OLIVA D, HINOJOSA S, CUEVAS E, et al. Cross entropy based thresholding for magnetic resonance brain images using Crow Search Algorithm[J]. Expert Systems with Applications, 2017, 79: 164–180. [3] 聂方彦, 李建奇, 张平凤, 等. 复杂图像的Kaniadakis熵阈值分割方法[J]. 激光与红外, 2017, 47(8): 1040–1045. NIE Fangyan, LI Jianqi, ZHANG Pingfeng, et al. Threshold segmentation method of complex image based on Kaniadakis entropy[J]. Laser &Infrared, 2017, 47(8): 1040–1045. [4] NG H F. Automatic thresholding for defect detection[J]. Pattern Recognition Letters, 2006, 27(14): 1644–1649. [5] BHANDARI A K, KUMAR A, and SINGH G K. Tsallis entropy based multilevel thresholding for colored satellite image segmentation using evolutionary algorithms[J]. Expert Systems with Applications, 2015, 42(22): 8707–8730. [6] PAL S K, SHANKAR B U, and MITRA P. Granular computing, rough entropy and object extraction[J]. Pattern Recognition Letters, 2005, 26(16): 2509–2517. [7] PAWLAK Z. Rough sets[J]. International Journal of Computer & Information Sciences, 1982, 11(5): 341–356. [8] PAWLAK Z. Rough Sets: Theoretical Aspects of Reasoning about Data[M]. Dordrecht: Springer, 1991: 2−8. [9] 岳晓冬, 苗夺谦, 钟才明. 基于粗糙性度量的彩色图像分割方法[J]. 自动化学报, 2010, 36(6): 807–816. YUE Xiaodong, MIAO Duoqian, and ZHONG Caiming. Roughness measure approach to color image segmentation[J]. Acta Automatica Sinica, 2010, 36(6): 807–816. [10] 吴涛. 图像阈值化的自适应粗糙熵方法[J]. 中国图象图形学报, 2014, 19(1): 1–10. WU Tao. Adaptive rough entropy method for image thresholding[J]. Journal of Image and Graphics, 2014, 19(1): 1–10. [11] 姚龙洋, 张清华, 胡帅鹏, 等. 基于近似集与粒子群的粗糙熵图像分割方法[J]. 计算机科学与探索, 2016, 10(5): 699–708. YAO Longyang, ZHANG Qinghua, HU Shuaipeng, et al. Rough entropy for image segmentation based on approximation sets and particle swarm optimization[J]. Journal of Frontiers of Computer Science and Technology, 2016, 10(5): 699–708. [12] 刘丽华, 周涛, 周乾智. 基于VPRS粗糙熵的图像分割[J]. 计算机工程与应用, 2018, 54(20): 178–183. LIU Lihua, ZHOU Tao, and ZHOU Qianzhi. Image segmentation on entropy of variable precision rough entropy[J]. Computer Engineering and Applications, 2018, 54(20): 178–183. [13] SARDAR M, MITRA S, and SHANKAR B U. Iris localization using rough entropy and CSA: A soft computing approach[J]. Applied Soft Computing, 2018, 67: 61–69. [14] HASSANIEN A E, ABRAHAM A, PETERS J F, et al. Rough sets and near sets in medical imaging: A review[J]. IEEE Transactions on Information Technology in Biomedicine, 2009, 13(6): 955–968. [15] SEN D and PAL S K. Generalized rough sets, entropy, and image ambiguity measures[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) , 2009, 39(1): 117–128. [16] SEN D and PAL S K. Histogram thresholding using beam theory and ambiguity measures[J]. Fundamenta Informaticae, 2007, 75(1/4): 483–504. [17] MAŁYSZKO D and STEPANIUK J. Adaptive multilevel rough entropy evolutionary thresholding[J]. Information Sciences, 2010, 180(7): 1138–1158. [18] 邓廷权, 盛春冬. 结合变精度粗糙熵和遗传算法的图像阈值分割方法[J]. 控制与决策, 2011, 26(7): 1079–1082. DENG Tingquan and SHENG Chundong. Image threshold segmentation based on entropy of variable precision rough sets and genetic algorithm[J]. Control and Decision, 2011, 26(7): 1079–1082. [19] 吴尚智, 佘志用, 张霞, 等. 利用变精度粗糙熵的图像分割算法[J]. 计算机工程与科学, 2018, 40(10): 1837–1843. WU Shangzhi, SHE Zhiyong, HANG Xia, et al. An image segmentation algorithm using variable precision rough entropy[J]. Computer Engineering &Science, 2018, 40(10): 1837–1843. [20] PAL N R and PAL S K. Entropic thresholding[J]. Signal Processing, 1989, 16(2): 97–108. [21] 吴一全, 占必超. 基于混沌粒子群优化的倒数熵阈值选取方法[J]. 信号处理, 2010, 26(7): 1044–1049. WU Yiquan and ZHAN Bichao. Thresholding based on reciprocal entropy and chaotic particle swarm optimization[J]. Signal Processing, 2010, 26(7): 1044–1049. [22] 吴一全, 殷骏, 毕硕本. 最大倒数熵/倒数灰度熵多阈值选取[J]. 信号处理, 2013, 29(2): 143–151. WU Yiquan, YIN Jun, and BI Shuoben. Multi-threshold selection using maximum reciprocal entropy/reciprocal gray entropy[J]. Journal of Signal Processing, 2013, 29(2): 143–151. [23] CHENG Hengda and SUN Ying. A hierarchical approach to color image segmentation using homogeneity[J]. IEEE Transactions on Image Processing, 2000, 9(12): 2071–2082. [24] 罗钧, 杨永松, 侍宝玉. 基于改进的自适应差分演化算法的二维Otsu多阈值图像分割[J]. 电子与信息学报, 2019, 41(8): 2017–2024. LUO Jun, YANG Yongsong, and SHI Baoyu. Multi-threshold image segmentation of 2D Otsu based on improved adaptive differential evolution algorithm[J]. Journal of Electronics &Information Technology, 2019, 41(8): 2017–2024. [25] SHUBHAM S and BHANDARI A K. A generalized Masi entropy based efficient multilevel thresholding method for color image segmentation[J]. Multimedia Tools and Applications, 2019, 78(12): 17197–17238. [26] LI Xueqin, ZHAO Zhiwei, and CHENG H S. Fuzzy entropy threshold approach to breast cancer detection[J]. Information Sciences - Applications, 1995, 4(1): 49–56. [27] http://vcipl-okstate.org/pbvs/bench/, 2013. [28] WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600–612.
•  [1] 廖苗, 李阳, 赵于前, 刘毅志.  一种新的图像超像素分割方法, 电子与信息学报. doi: 10.11999/JEIT190111 [2] 任永梅, 杨杰, 郭志强, 曹辉.  基于多尺度卷积神经网络的自适应熵加权决策融合船舶图像分类方法, 电子与信息学报. doi: 10.11999/JEIT200102 [3] 卢迪, 黄鑫, 柳长源, 林雪, 张华玉, 严俊.  基于区域对比度增强的二值化算法, 电子与信息学报. doi: 10.11999/JEIT160197 [4] 张营, 朱岱寅, 俞翔, 毛新华.  一种VideoSAR动目标阴影检测方法, 电子与信息学报. doi: 10.11999/JEIT161394 [5] 杨爱萍, 张莉云, 曲畅, 王建.  基于加权L1正则化的水下图像清晰化算法, 电子与信息学报. doi: 10.11999/JEIT160481 [6] 何人杰, 樊养余, WANGZhiyong, FENGDavid.  基于非局部全变分正则化优化的单幅雾天图像恢复新方法, 电子与信息学报. doi: 10.11999/JEIT160208 [7] 韩明, 刘教民, 孟军英, 震洲, 王敬涛.  结合局部能量与改进的符号距离正则项的图像目标分割算法, 电子与信息学报. doi: 10.11999/JEIT141473 [8] 李伟斌, 易贤, 宋松和.  一种图像分割的快速不动点算法, 电子与信息学报. doi: 10.11999/JEIT150112 [9] 付晓薇, 代芸, 陈黎, 田菁, 丁胜.  基于局部熵的量子衍生医学超声图像去斑, 电子与信息学报. doi: 10.11999/JEIT140587 [10] 季成涛, 何小海, 符耀庆, 梁子飞, 卿粼波.  一种基于正则化的边缘定向插值算法, 电子与信息学报. doi: 10.3724/SP.J.1146.2013.00582 [11] 张琨, 王翠荣.  一种自适应分裂与合并的运动目标聚类分割算法, 电子与信息学报. doi: 10.3724/SP.J.1146.2013.00652 [12] 刘金, 唐权华, 余志斌, 金炜东.  基于三维直方图降维和重建的快速最小误差阈值法, 电子与信息学报. doi: 10.3724/SP.J.1146.2013.01468 [13] 赵雪梅, 李玉, 赵泉华.  结合高斯回归模型和隐马尔可夫随机场的模糊聚类图像分割, 电子与信息学报. doi: 10.3724/SP.J.1146.2013.01751 [14] 黄志坚, 黎湘, 徐帆江.  基于视觉复杂度的自适应尺度遥感影像分割, 电子与信息学报. doi: 10.3724/SP.J.1146.2013.00191 [15] 李伟斌, 高二, 宋松和.  一种全局最小化的图像分割方法, 电子与信息学报. doi: 10.3724/SP.J.1146.2012.00759 [16] 范朝冬, 欧阳红林, 张英杰.  基于小概率策略的Otsu图像分割方法, 电子与信息学报. doi: 10.3724/SP.J.1146.2012.01598 [17] 刘金, 余志斌, 金炜东.  三维最小误差阈值法及其快速递推算法, 电子与信息学报. doi: 10.3724/SP.J.1146.2013.00041 [18] 颜学颖, 焦李成.  基于各向异性自适应高斯加权方向窗的非局部三维Otsu图像门限分割, 电子与信息学报. doi: 10.3724/SP.J.1146.2012.00859 [19] 杨娴, 李勃, 丁文, 陈启美.  基于局部自适应色差阈值的彩色图像边缘检测, 电子与信息学报. doi: 10.3724/SP.J.1146.2012.00203 [20] 朱云峰, 章毓晋.  直推式多视图协同分割, 电子与信息学报. doi: 10.3724/SP.J.1146.2010.00839
• 点击查看大图
图(6) / 表(2)
##### 计量
• 文章访问数:  644
• HTML全文浏览量:  305
• PDF下载量:  45
• 被引次数: 0
##### 出版历程
• 收稿日期:  2019-07-25
• 修回日期:  2019-10-25
• 网络出版日期:  2019-11-13
• 刊出日期:  2020-01-21

### 目录

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈

官方微信，欢迎关注