高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

通信电台电磁辐射2阶互调低频阻塞效应与作用机理

魏光辉 赵凯 任仕召

魏光辉, 赵凯, 任仕召. 通信电台电磁辐射2阶互调低频阻塞效应与作用机理[J]. 电子与信息学报, 2020, 42(8): 2059-2064. doi: 10.11999/JEIT190574
引用本文: 魏光辉, 赵凯, 任仕召. 通信电台电磁辐射2阶互调低频阻塞效应与作用机理[J]. 电子与信息学报, 2020, 42(8): 2059-2064. doi: 10.11999/JEIT190574
Guanghui WEI, Kai ZHAO, Shizhao REN. Second-order Intermodulation Low Frequency Blocking Effect and Mechanism for Communication Radio under Electromagnetic Radiation[J]. Journal of Electronics and Information Technology, 2020, 42(8): 2059-2064. doi: 10.11999/JEIT190574
Citation: Guanghui WEI, Kai ZHAO, Shizhao REN. Second-order Intermodulation Low Frequency Blocking Effect and Mechanism for Communication Radio under Electromagnetic Radiation[J]. Journal of Electronics and Information Technology, 2020, 42(8): 2059-2064. doi: 10.11999/JEIT190574

通信电台电磁辐射2阶互调低频阻塞效应与作用机理

doi: 10.11999/JEIT190574
详细信息
    作者简介:

    魏光辉:男,1964年生,教授,主要研究方向为静电与电磁防护技术、电磁环境效应试验评估技术

    赵凯:男,1991年生,博士生,研究方向为电磁环境效应试验评估技术

    任仕召:男,1988年生,硕士生,研究方向为电磁环境效应试验评估技术

    通讯作者:

    赵凯  oeczhao@126.com

  • 中图分类号: TN924; TM937

Second-order Intermodulation Low Frequency Blocking Effect and Mechanism for Communication Radio under Electromagnetic Radiation

  • 摘要: 为揭示通信电台复杂电磁环境效应机理,该文采用全电平辐照法实验研究了某型超短波数字通信电台的单频和带外双频电磁辐射阻塞效应,确定了其单频电磁辐射效应规律和敏感带宽,实验数据表明受试电台对带外双频3阶互调阻塞较单频电磁辐射阻塞干扰敏感9~23 dB。实验过程中发现了一种既不能用双频非互调迭加机理解释、也不能用3阶交互调机理解释的双频电磁辐射敏感现象。
  • 图  1  通信电台单频电磁辐射效应试验配置

    图  2  受试通信电台单频阻塞临界干扰场强

    图  3  通信电台双频电磁辐射效应试验配置

    图  4  通信电台原理结构框图

    图  5  受试通信电台低频干扰电平随互调频差的变化

    图  6  受试通信电台2阶互调低频阻塞干扰因子随辐射频偏的变化

    表  1  通信电台双频3阶互调阻塞临界干扰场强

    频率组合(kHz)Δf1=f1f036487296144
    Δf2=f2f07296144192288
    临界干扰场强比E1/E10–11.7–12.3–13.3–17.9–18.2
    E2/E20–13.2–22.5–24.8–32.3–27.1
    频率组合(kHz)Δf1=f1f036487296144
    Δf2=f2f04886154212268
    临界干扰场强比E1/E10–8.7–13.3–13.6–19.5–19.8
    E2/E20–10.8–17.0–24.1–19.9–22.9
    下载: 导出CSV

    表  2  通信电台新型双频阻塞临界干扰场强

    频率组合(kHz)Δf1=f1f0100150200250300
    Δf2=f2f0150200250300350
    临界干扰场强比E1/E10–25.6–26.3–28.7–28.4–30.6
    E2/E20–26.7–29.5–29.2–30.5–28.5
    频率组合(kHz)Δf1=f1f0127150220240230
    Δf2=f2f0177160330360390
    临界干扰场强比E1/E10–26.5–17.5–30.6–34.4–4.0
    E2/E20–27.7–17.7–30.5–34.4–4.1
    下载: 导出CSV

    表  3  干扰信号进入通信电台各结构后输出分量频率

    结构频率
    天线接收f1, f2 (设f1<f2)
    一级放大f1, f2, f2±f1, 2f1±f2和2f2±f1, 3f1和3f2 (忽略高阶互调分量)
    上变频Fm+f0f1, Fm+f0f2, Fm+f0f2±f1, Fm+f0–2f1±f2, Fm+f0–2f2±f1, Fm+f0–3f1, Fm+f0–3f2
    Fm+f0+f1, Fm+f0+f2, Fm+f0+f2±f1, Fm+f0+2f1±f2, Fm+f0+2f2±f1, Fm+f0+3f1, Fm+f0+3f2
    窄带滤波Fm+f0f1, Fm+f0f2, Fm+f0–2f1+f2Fm+f0–2f2+f1
    三级放大Fm+f0f1, Fm+f0f2, Fm+f0–2f1+f2, Fm+f0–2f2+f1f2f1, 2(f2f1), 3(f2-f1), 2(Fm+f0)–f1f2,
    2(Fm+f0f1), 2(Fm+f0f2), 2(Fm+f0)–3f1–f2, 2(Fm+f0)–3f2f1 (忽略3阶互调)
    下变频与低通(带通)滤波FL+f0f1, FL+f0f2, FL+f0–2f1+f2, FL+f0–2f2+f1, FL+(f2f1), FL+2(f2f1), FL+3(f2f1)
    下载: 导出CSV

    表  4  2阶互调低频阻塞干扰效应评估准确度

    电台工作频率(MHz)506070506070
    频率组合(kHz)f1f0200200200200200230
    f2f0250250250300300330
    临界干扰场强比E1/E10–25.0–28.9–29.1–26.3–30.2–29.1
    E2/E20–23.7–30.9–22.0–28.7–30.1–28.9
    评估准确度R24.4–6.72.0–4.1–9.4–7.6
    下载: 导出CSV
  • [1] 孙国至, 刘尚合, 陈京平, 等. 战场电磁环境效应对信息化战争的影响[J]. 军事运筹与系统工程, 2006, 20(3): 43–47. doi:  10.3969/j.issn.1672-8211.2006.03.010

    Guozhi, LIU Shanghe, CHEN Jingping, et al. The effects on the information warfare of the electromagnetic environments effectiveness in the battle field[J]. Military Operations Research and Systems Engineering, 2006, 20(3): 43–47. doi:  10.3969/j.issn.1672-8211.2006.03.010
    [2] 刘尚合, 武占成, 张希军. 电磁环境效应及其发展趋势[J]. 国防科技, 2008, 29(1): 1–6. doi:  10.3969/j.issn.1671-4547.2008.01.001

    LIU Shanghe, WU Zhancheng, and ZHANG Xijun. Electromagnetic environment effect and its development trends[J]. National Defense Science &Technology, 2008, 29(1): 1–6. doi:  10.3969/j.issn.1671-4547.2008.01.001
    [3] 颜克文. 短波通信设备电磁防护技术研究[D]. [硕士论文], 电子科技大学, 2009: 1–3.

    YAN Kewen. Research on electromagnetic protection technology of short wave communication equipment[D]. [Master dissertation], University of Electronic Science and Technology of China, 2009: 1–3.
    [4] 魏光辉, 潘晓东, 万浩江. 装备电磁辐射效应规律与作用机理[M]. 北京: 国防工业出版社, 2018: 87–106.

    WEI Guanghui, PAN Xiaodong, and WAN Haojiang. Feature and Mechanism of Electromagnetic Radiation Effects for Equipment[M]. Beijing: National Defense Industry Press, 2018: 87–106.
    [5] 魏光辉, 耿利飞, 潘晓东. 通信电台电磁辐射效应机理[J]. 高电压技术, 2014, 40(9): 2685–2692. doi:  10.13336/j.1003-6520.hve.2014.09.011

    WEI Guanghui, GENG Lifei, and PAN Xiaodong. Mechanism of electromagnetic radiation effects for communication equipment[J]. High Voltage Engineering, 2014, 40(9): 2685–2692. doi:  10.13336/j.1003-6520.hve.2014.09.011
    [6] 李伟, 魏光辉, 潘晓东, 等. 典型通信装备带内双频连续波电磁辐射效应预测方法[J]. 系统工程与电子技术, 2016, 38(11): 2474–2480. doi:  10.3969/j.issn.1001-506X.2016.11.04

    LI Wei, WEI Guanghui, PAN Xiaodong, et al. Electromagnetic radiation effects forecasting method about in-band dual-frequency continuous wave for typical communication equipment[J]. Systems Engineering and Electronics, 2016, 38(11): 2474–2480. doi:  10.3969/j.issn.1001-506X.2016.11.04
    [7] 李伟, 魏光辉, 王雅平, 等. 某型通信装备带内多频电磁环境生存能力预测[J]. 高电压技术, 2017, 43(8): 2680–2688. doi:  10.13336/j.1003-6520.hve.20170731032

    LI Wei, WEI Guanghui, WANG Yaping, et al. Survivability forecasting method for typical communication equipment under the in-band multi-frequency electromagnetic environment[J]. High Voltage Engineering, 2017, 43(8): 2680–2688. doi:  10.13336/j.1003-6520.hve.20170731032
    [8] LI Wei, WEI Guanghui, PAN Xiaodong, et al. Electromagnetic compatibility prediction method under the multifrequency in-band interference environment[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 60(2): 520–528. doi:  10.1109/TEMC.2017.2720961
    [9] 王雅平, 魏光辉, 李伟, 等. 接收机带内双频阻塞干扰机理建模与验证[J]. 北京理工大学学报, 2018, 38(7): 709–714. doi:  10.15918/j.tbit1001-0645.2018.07.008

    WANG Yaping, WEI Guanghui, LI Wei, et al. Mechanism modeling and verification of receiver with in-band dual-frequency blocking jamming[J]. Transactions of Beijing Institute of Technology, 2018, 38(7): 709–714. doi:  10.15918/j.tbit1001-0645.2018.07.008
    [10] 王雅平, 魏光辉, 潘晓东, 等. 通信电台带外双频干扰预测模型与试验[J]. 电子学报, 2019, 47(4): 826–831. doi:  10.3969/j.issn.0372-2112.2019.04.009

    WANG Yaping, WEI Guanghui, PAN Xiaodong, et al. Out-of-band dual frequency jamming prediction model and experiment for communication stations[J]. Acta Electronica Sinica, 2019, 47(4): 826–831. doi:  10.3969/j.issn.0372-2112.2019.04.009
    [11] 耿利飞, 魏光辉, 潘晓东, 等. 某型通信电台超宽带辐照效应[J]. 强激光与粒子束, 2011, 23(12): 3358–3362. doi:  10.3788/HPLPB20112312.3358

    GENG Lifei, WEI Guanghui, PAN Xiaodong, et al. UWB irradiation effects on communication equipment[J]. High Power Laser and Particle Beams, 2011, 23(12): 3358–3362. doi:  10.3788/HPLPB20112312.3358
    [12] 王雅平, 魏光辉, 潘晓东, 等. 通信电台带外连续波强场辐照重启效应分析[J]. 强激光与粒子束, 2017, 29(4): 043201. doi:  10.11884/HPLPB201729.160528

    WANG Yaping, WEI Guanghui, PAN Xiaodong, et al. Analysis on restart effect of communication station under strong field irradiation interference of out-band continuous wave[J]. High Power Laser and Particle Beams, 2017, 29(4): 043201. doi:  10.11884/HPLPB201729.160528
    [13] 中央军委装备发展部. GJB 8848-2016 系统电磁环境效应试验方法[S]. 2016.

    Equipment development department of the Central Military Commission. GJB 8848-2016 Electromagnetic environmental effects test methods for systems[S]. 2016.
    [14] 李伟, 魏光辉, 潘晓东, 等. 典型通信装备电磁敏感度判据研究[J]. 微波学报, 2016, 32(6): 70–75. doi:  10.14183/j.cnki.1005-6122.201606017

    LI Wei, WEI Guanghui, PAN Xiaodong, et al. Research on electromagnetic susceptibility criterion for typical communication equipment[J]. Journal of Microwaves, 2016, 32(6): 70–75. doi:  10.14183/j.cnki.1005-6122.201606017
    [15] 魏光辉. 射频强场电磁环境试验系统可行性研究[J]. 实验室研究与探索, 2005, 24(6): 21–24. doi:  10.3969/j.issn.1006-7167.2005.06.006

    WEI Guanghui. Research on the feasibility for constructing a high RF electromagnetic field environment simulation system[J]. Research and Exploration in Laboratory, 2005, 24(6): 21–24. doi:  10.3969/j.issn.1006-7167.2005.06.006
  • [1] 李伟, 魏光辉, 潘晓东, 王雅平, 万浩江, 孙梳清.  复杂电磁环境下通信装备干扰预测方法, 电子与信息学报. doi: 10.11999/JEIT170107
    [2] 李伟龙, 吴德伟, 周阳, 杜佳.  基于生物位置细胞放电机理的空间位置表征方法, 电子与信息学报. doi: 10.11999/JEIT151331
    [3] 张悦, 刘尚合, 刘卫东.  基于广义互相关与混沌序列预测集成算法的微瞬态电磁辐射信号检测方法, 电子与信息学报. doi: 10.11999/JEIT 150306
    [4] 石乐义, 姜蓝蓝, 贾春福, 王晓蕊.  蜜罐诱骗防御机理的博弈理论分析, 电子与信息学报. doi: 10.3724/SP.J.1146.2011.00929
    [5] 李信, 祁海明, 华斌, 雷宏, 禹卫东.  星载SAR原始数据压缩引起的目标辐射误差机理研究, 电子与信息学报. doi: 10.3724/SP.J.1146.2010.01394
    [6] 余颖, 王小青, 朱敏慧, 肖疆.  双站SAR的海面速度聚束调制机理研究, 电子与信息学报. doi: 10.3724/SP.J.1146.2007.01375
    [7] 赵学智, 叶邦彦, 陈统坚.  模糊奇异性信号的检测机理, 电子与信息学报. doi: 10.3724/SP.J.1146.2006.01857
    [8] 张旻, 王若冰, 钟子发.  通信电台个体识别中的载波稳定度特征提取技术研究, 电子与信息学报. doi: 10.3724/SP.J.1146.2007.00383
    [9] 强勇, 焦李成, 保铮.  动态规划算法进行弱目标检测的机理研究, 电子与信息学报.
    [10] 方振贤, 徐维杰.  三值动态和静态广义时序机理论, 电子与信息学报.
    [11] 刘红侠, 郝跃.  薄栅SiO2击穿特性的实验分析和机理研究, 电子与信息学报.
    [12] 冯景星.  硅与玻璃静电封接机理的研究, 电子与信息学报.
    [13] 林海安, 吴冲若, 邱洁真.  氧分压影响SnO2气敏传感器响应的机理, 电子与信息学报.
    [14] 柯亨玉, 黄锡文.  理想导电凸曲面上振子电磁辐射UTD解的并矢格林函数方法, 电子与信息学报.
    [15] 宋文淼.  电磁辐射过程中的能量守恒关系, 电子与信息学报.
    [16] 吴兆皓.  铝酸盐钡钨阴极中掺氧化钙和氧化钪的作用机理, 电子与信息学报.
    [17] 潘奇汉.  Cu-Al-Mg合金的次级电子发射机理的探讨, 电子与信息学报.
    [18] 李思渊, 张同军, 李寿嵩, 王毓珍.  La在Si/SiO2界面的电效应, 电子与信息学报.
    [19] 张恩虬, 刘学悫.  关于钡系统热阴极的电子发射机理, 电子与信息学报.
    [20] 张奇, 陆家和.  等离子体场发射阴极发射机理的探讨, 电子与信息学报.
  • 加载中
  • 图(6) / 表ll (4)
    计量
    • 文章访问数:  452
    • HTML全文浏览量:  542
    • PDF下载量:  16
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-07-30
    • 修回日期:  2020-03-06
    • 网络出版日期:  2020-04-25
    • 刊出日期:  2020-08-18

    目录

      /

      返回文章
      返回

      官方微信,欢迎关注