高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向服务的车辆网络切片协调智能体设计

吴大鹏 郑豪 崔亚平

吴大鹏, 郑豪, 崔亚平. 面向服务的车辆网络切片协调智能体设计[J]. 电子与信息学报, 2020, 42(8): 1910-1917. doi: 10.11999/JEIT190635
引用本文: 吴大鹏, 郑豪, 崔亚平. 面向服务的车辆网络切片协调智能体设计[J]. 电子与信息学报, 2020, 42(8): 1910-1917. doi: 10.11999/JEIT190635
Dapeng WU, Hao ZHENG, Yaping CUI. Service-oriented Coordination agent Design for Network Slicing in Vehicular Networks[J]. Journal of Electronics and Information Technology, 2020, 42(8): 1910-1917. doi: 10.11999/JEIT190635
Citation: Dapeng WU, Hao ZHENG, Yaping CUI. Service-oriented Coordination agent Design for Network Slicing in Vehicular Networks[J]. Journal of Electronics and Information Technology, 2020, 42(8): 1910-1917. doi: 10.11999/JEIT190635

面向服务的车辆网络切片协调智能体设计

doi: 10.11999/JEIT190635
基金项目: 国家自然科学基金(61871062, 61771082, 61801065),重庆市高校创新团队建设计划资助项目(CXTDX201601020)
详细信息
    作者简介:

    吴大鹏:男,1979年生,教授,研究方向为泛在无线网络、社会计算、无线网络服务质量控制等

    郑豪:1995年生,硕士生,研究方向为车联网、网络切片与虚拟化

    崔亚平:1986年生,讲师,研究方向为毫米波通信、多天线技术、车联网等

    通讯作者:

    郑豪 547721540@qq.com

  • 中图分类号: TN915; TP393

Service-oriented Coordination agent Design for Network Slicing in Vehicular Networks

Funds: The National Natural Science Foundation of China (61871062, 61771082, 61801065), The Program for Innovation Team Building at Institutions of Higher Education in Chongqing (CXTDX201601020)
  • 摘要: 针对现有研究中缺乏对车辆网络切片的部署和管理,该文设计了车辆网络切片架构中的切片协调智能体。首先基于K-means++聚类算法将车联网通信业务根据相似度进行聚类并映射到对应的切片中。其次,在考虑应用场景间的时空差异导致的无线资源利用不均衡现象,提出了共享比例公平方案以实现对无线资源的高效及差异化利用。最后,为了保证切片服务需求,采用线性规划障碍方法求解最优的切片权重分配,使切片负载变化容忍度最大化。仿真结果表明,共享比例公平方案相比于静态切片方案平均比特传输时延(BTD)更小,在每切片用户数为30的情况下均匀分布用户负载场景中二者的BTD增益为1.4038,且在不同的用户负载分布场景下都能求出最优的切片权重分配。
  • 图  1  车辆网络切片系统架构

    图  2  聚类前后数据点对比

    图  3  3种用户负载分布场景下的理论和仿真BTD增益对比

    图  4  不同用户负载分布场景下的最优切片权重分配

    表  1  符号缩写

    符号定义含义
    ${\rho ^v}$${n^v}$切片$v$的总负载
    ${{{\rho}} ^v}$$\left( {\rho _b^v \triangleq n_b^v:b \in {\cal{B}}} \right)$切片$v$的负载分布
    ${{\widetilde {{\rho}}} ^v}$$\left( {\widetilde \rho _b^v \triangleq \dfrac{ {\rho _b^v} }{ { {\rho ^v} } }:b \in {\cal{B} } } \right)$切片$v$的相对负载分布
    ${\widetilde {{g}}}$$\left( { { {\widetilde g}_b} \triangleq \displaystyle\sum\nolimits_{v \in {\cal{V} } } { {s^v}\widetilde \rho _b^v:b \in {\cal{B} } } } \right)$总体权重相对负载分布
    ${{{\delta}} ^v}$$\left( {\delta _b^v \triangleq \mathbb{E}\left[ {\dfrac{1}{ {c_b^v} } } \right]:b \in {\cal{B} } } \right)$切片$v$的平均容量倒数
    $ {{\varDelta}} _v $${\rm{diag}}\left( {{{{\delta}} ^v}} \right)$切片$v$的平均容量倒数的对角矩阵
    下载: 导出CSV

    表  2  基于线性规划障碍的资源分配算法(算法1)

     输入:初始${x_0}$,初始确定近似的参数${t_0}$,比例因子$\mu $,误差阈值$\varepsilon $
     输出:最优解${x^*}$
     (1) $x \leftarrow {x_0},t \leftarrow {t_0},\mu \leftarrow 50,\varepsilon \leftarrow {10^{ - 3}}$
     (2) ${\rm{while}}\;({\rm{true}}) \;{\rm{do}}$
     (3) 执行表3所示的算法2,从$x$开始,最小化$t{f_0} + \phi $,得到对偶
       可行解${x^*}(t)$
     (4) $x \leftarrow {x^*}(t)$
     (5) 计算当前对偶间隔${\rm{dualityGap} } \leftarrow \dfrac{ {2V} }{t}$
     (6) ${\rm{If}}\;{\rm{dualityGap}} < \varepsilon\;{\rm{ then}}$
     (7) break
     (8) End if
     (9) $t \leftarrow \mu t$
     (10) Endwhile
     (11) return $x$
    下载: 导出CSV

    表  3  K-means++服务聚类算法(算法2)

     步骤 1 选择$K$个聚类${C_1},{C_2}, ··· ,{C_k}$的聚类中心;
     (1) 从数据集中随机选取一个样本作为初始聚类中心${\mu _1}$;
     (2) 首先计算每个样本与当前已有聚类中心之间的最短距离$D(x)$,其次计算每个样本被选为下一个聚类中心的概率
      $p(x) \leftarrow { {D{ {(x)}^2} } \Bigr/ {\displaystyle\sum\nolimits_{x \in X} {D{ {(x)}^2} } } }$,最后根据轮盘法选出下一个聚类中心;
     (3) 重复(2)直到选出$K$个聚类中心${\rm{(} }{\mu _1},{\mu _2}, ··· ,{\mu _k})$。
     步骤 2 对剩下的每个样本${x_i}$,计算其到$K$个聚类中心的距离${\rm{dist(}}{x_i},{\mu _k})$并将其分到距离最小的聚类中心所对应的类中;
     步骤 3 根据公式${\mu _k} = \dfrac{1}{ {\left| { {C_k} } \right|} }\displaystyle\sum\nolimits_{i \in {C_k} } { {x_i} } $重新计算聚类中心;
     步骤 4 重复步骤2和步骤3,直到聚类中心不再变化。
    下载: 导出CSV
  • [1] 5G PPP Architecture Working Group. 5G empowering vertical industries[EB/OL]. https://5g-ppp.eu/wpcontent/uploads/2016/02/BROCHURE_5PPP_BAT2_PL.pdf, 2016.
    [2] RAHMAN M M, DESPINS C, and AFFES S. Design optimization of wireless access virtualization based on cost & QoS trade-off utility maximization[J]. IEEE Transactions on Wireless Communications, 2016, 15(9): 6146–6162. doi:  10.1109/TWC.2016.2580505
    [3] LIANG Chengchao and YU F R. Wireless network virtualization: A survey, some research issues and challenges[J]. IEEE Communications Surveys & Tutorials, 2015, 17(1): 358–380. doi:  10.1109/COMST.2014.2352118
    [4] CHATRAS B, KWONG U S T, and BIHANNIC N. NFV enabling network slicing for 5G[C]. The 20th Conference on Innovations in Clouds, Internet and Networks, Paris, France, 2017: 219–225. doi: 10.1109/ICIN.2017.7899415.
    [5] COSTA-PEREZ X, SWETINA J, GUO Tao, et al. Radio access network virtualization for future mobile carrier networks[J]. IEEE Communications Magazine, 2013, 51(7): 27–35. doi:  10.1109/MCOM.2013.6553675
    [6] ABDELWAHAB S, HAMDAOUI B, GUIZANI M, et al. Network function virtualization in 5G[J]. IEEE Communications Magazine, 2016, 54(4): 84–91. doi:  10.1109/MCOM.2016.7452271
    [7] ZHOU Xuan, LI Rongpeng, CHEN Tao, et al. Network slicing as a service: Enabling enterprises’ own software-defined cellular networks[J]. IEEE Communications Magazine, 2016, 54(7): 146–153. doi:  10.1109/MCOM.2016.7509393
    [8] KATSALIS K, NIKAEIN N, SCHILLER E, et al. Network slices toward 5G communications: Slicing the LTE network[J]. IEEE Communications Magazine, 2017, 55(8): 146–154. doi:  10.1109/MCOM.2017.1600936
    [9] LIU Xiangru, LI Muxuan, SONG Mei, et al. Wireless virtual network embedding based on spectrum sharing allocation[C]. The 11th International Conference on Computer Science & Education (ICCSE), Nagoya, Japan, 2016: 670–675. doi: 10.1109/ICCSE.2016.7581660.
    [10] ZHENG Jiaxiao, CABALLERO P, DE VECIANA G, et al. Statistical multiplexing and traffic shaping games for network slicing[J]. IEEE/ACM Transactions on Networking, 2018, 26(6): 2528–2541. doi:  10.1109/TNET.2018.2870184
    [11] KHAN Z, FAN Pingzhi, ABBAS F, et al. Two-level cluster based routing scheme for 5G V2X communication[J]. IEEE Access, 2019, 7: 16194–16205. doi:  10.1109/ACCESS.2019.2892180
    [12] CAMPOLO C, MOLINARO A, IERA A, et al. 5G network slicing for vehicle-to-everything services[J]. IEEE Wireless Communications, 2017, 24(6): 38–45. doi:  10.1109/MWC.2017.1600408
    [13] 3GPP. TR 38.802(v14.2.0) Technical specification group radio access network: Study on new radio (NR) access technology physical layer aspects[S]. 2017.
    [14] KYÖSTI P, MEINILÄ J, HENTILÄ L, et al. WINNER II channel models[R]. IST-4-027756 WINNER II D1.1.2 V1.2, 2007.
    [15] YANG S J and DE VECIANA G. Enhancing both network and user performance for networks supporting best effort traffic[J]. IEEE/ACM Transactions on Networking, 2004, 12(2): 349–360. doi:  10.1109/TNET.2004.826280
    [16] 3GPP. TS36.300 v14.0.0 Technical specification group radio access network; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2[S]. 2016.
    [17] BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004: 139–143.
    [18] TIAA-FUTURE车联网联合工作组. 智能网联汽车基本应用[R]. 北京: 车载信息服务产业应用联盟, 2016: 18.

    TIAA-FUTURE Vehicular network Joint Working group. Intelligent and connected vehicle basic applications[R]. Beijing: Telematics Industry Application Alliance, 2016: 18.
    [19] CHENAND L, CHEN Wenwen, WANG Bin, et al. System-level simulation methodology and platform for mobile cellular systems[J]. IEEE Communications Magazine, 2011, 49(7): 148–155. doi:  10.1109/MCOM.2011.5936168
    [20] YE Qiaoyang, RONG Beiyu, CHEN Yudong, et al. User association for load balancing in heterogeneous cellular networks[J]. IEEE Transactions on Wireless Communications, 2013, 12(6): 2706–2716. doi:  10.1109/TWC.2013.040413.120676
  • [1] 谢永, 李香, 张松松, 吴黎兵.  一种可证安全的车联网无证书聚合签名改进方案, 电子与信息学报. doi: 10.11999/JEIT190184
    [2] 邵鸿翔, 孙有铭, 蔡佶昊.  面向用户体验的多小区混合非正交多址接入网络资源分配方法, 电子与信息学报. doi: 10.11999/JEIT20032
    [3] 张达敏, 张绘娟, 闫威, 陈忠云, 辛梓芸.  异构网络中基于能效优化的D2D资源分配机制, 电子与信息学报. doi: 10.11999/JEIT190042
    [4] 王汝言, 梁颖杰, 崔亚平.  车辆网络多平台卸载智能资源分配算法, 电子与信息学报. doi: 10.11999/JEIT190074
    [5] 唐伦, 魏延南, 谭颀, 唐睿, 陈前斌.  H-CRAN网络下联合拥塞控制和资源分配的网络切片动态资源调度策略, 电子与信息学报. doi: 10.11999/JEIT190439
    [6] 唐伦, 肖娇, 赵国繁, 杨友超, 陈前斌.  基于能效的NOMA蜂窝车联网动态资源分配算法, 电子与信息学报. doi: 10.11999/JEIT190006
    [7] 赵国繁, 唐伦, 胡彦娟, 赵培培, 陈前斌.  面向可靠性的5G网络切片重构及映射算法, 电子与信息学报. doi: 10.11999/JEIT190500
    [8] 张海波, 荆昆仑, 刘开健, 贺晓帆.  车联网中一种基于软件定义网络与移动边缘计算的卸载策略, 电子与信息学报. doi: 10.11999/JEIT190304
    [9] 张海波, 程妍, 刘开健, 贺晓帆.  车联网中整合移动边缘计算与内容分发网络的移动性管理策略, 电子与信息学报. doi: 10.11999/JEIT190571
    [10] 唐伦, 肖娇, 魏延南, 赵国繁, 陈前斌.  基于云雾混合计算的车联网联合资源分配算法, 电子与信息学报. doi: 10.11999/JEIT190306
    [11] 唐伦, 周钰, 谭颀, 魏延南, 陈前斌.  基于强化学习的5G网络切片虚拟网络功能迁移算法, 电子与信息学报. doi: 10.11999/JEIT190290
    [12] 陈前斌, 施颖洁, 杨希希, 唐伦.  基于在线双向拍卖的虚拟网络切片资源调度机制, 电子与信息学报. doi: 10.11999/JEIT170902
    [13] 钱志鸿, 阎双叶, 田春生, 王鑫.  LTE-A网络中D2D通信的资源分配算法研究, 电子与信息学报. doi: 10.11999/JEIT180043
    [14] 唐伦, 张亚, 梁荣, 陈前斌.  基于网络切片的网络效用最大化虚拟资源分配算法, 电子与信息学报. doi: 10.11999/JEIT161322
    [15] 曹龙, 赵杭生, 鲍丽娜, 张建照.  分层认知无线电网络中基于稳定匹配的资源分配算法, 电子与信息学报. doi: 10.11999/JEIT151460
    [16] 张海波, 穆立雄, 陈善学, 彭焦阳.  OFDMA毫微微小区双层网络中基于分组的资源分配, 电子与信息学报. doi: 10.11999/JEIT150699
    [17] 陈丽敏, 杨静, 张健沛.  一种基于嵌入技术的异构信息网络的快速聚类算法, 电子与信息学报. doi: 10.11999/JEIT150106
    [18] 黄博, 方旭明, 陈煜.  OFDMA中继网络变时域节能资源分配策略, 电子与信息学报. doi: 10.3724/SP.J.1146.2012.01180
    [19] 苏欣, 张大方, 罗章琪, 曾彬, 黎文伟.  基于Command and Control通信信道流量属性聚类的僵尸网络检测方法, 电子与信息学报. doi: 10.3724/SP.J.1146.2011.01098
    [20] 张宝, 邱玲.  OFDMA Femtocell网络中混合接入方式下的资源分配策略, 电子与信息学报. doi: 10.3724/SP.J.1146.2011.00247
  • 加载中
  • 图(4) / 表ll (3)
    计量
    • 文章访问数:  1268
    • HTML全文浏览量:  642
    • PDF下载量:  22
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-08-26
    • 修回日期:  2020-03-10
    • 网络出版日期:  2020-04-21
    • 刊出日期:  2020-08-18

    目录

      /

      返回文章
      返回

      官方微信,欢迎关注