高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相关熵与循环相关熵信号处理研究进展

邱天爽

邱天爽. 相关熵与循环相关熵信号处理研究进展[J]. 电子与信息学报, 2020, 42(1): 105-118. doi: 10.11999/JEIT190646
引用本文: 邱天爽. 相关熵与循环相关熵信号处理研究进展[J]. 电子与信息学报, 2020, 42(1): 105-118. doi: 10.11999/JEIT190646
Tianshuang QIU. Development in Signal Processing Based on Correntropy and Cyclic Correntropy[J]. Journal of Electronics and Information Technology, 2020, 42(1): 105-118. doi: 10.11999/JEIT190646
Citation: Tianshuang QIU. Development in Signal Processing Based on Correntropy and Cyclic Correntropy[J]. Journal of Electronics and Information Technology, 2020, 42(1): 105-118. doi: 10.11999/JEIT190646

相关熵与循环相关熵信号处理研究进展

doi: 10.11999/JEIT190646
基金项目: 国家自然科学基金(61671105, 61172108, 61139001, 81241059)
详细信息
    作者简介:

    邱天爽:男,1954年生,教授,博士生导师,主要研究方向为非高斯、非平稳统计信号处理

    通讯作者:

    邱天爽 qiutsh@dlut.edu.cn

  • 中图分类号: TN911.7

Development in Signal Processing Based on Correntropy and Cyclic Correntropy

Funds: The National Natural Science Foundation of China (61671105, 61172108, 61139001, 81241059)
  • 摘要: 在无线电监测和目标定位等应用中,接收信号经常会受到脉冲噪声和同频带干扰等复杂电磁环境的影响,传统的基于2阶统计量的信号处理方法往往不能正常工作,基于分数低阶统计量的信号处理方法也由于对信号噪声统计先验知识的依赖性而遇到困难。近年来提出并受到信号处理领域普遍关注的相关熵和循环相关熵信号处理理论与方法,是解决复杂电磁环境下信号分析处理、参数估计、目标定位和其他应用问题的有效技术手段,有力促进了非高斯、非平稳信号处理理论方法和应用的发展。该文系统性地综述了相关熵和循环相关熵信号处理的基本理论和基本方法,包括相关熵与循环相关熵的起源背景、定义概念、性质特点,以及所包含的数学物理意义。该文还介绍了相关熵与循环相关熵信号处理在多个领域的应用问题,希望对非高斯、非平稳统计信号处理的研究和应用有所裨益。
  • 图  1  2D空间CIM等高线图[5]

    图  2  循环相关熵谱与常规的循环相关谱及分数低阶循环相关谱的对比[6]

  • [1] SHAO M and NIKIAS C L. Signal processing with fractional lower order moments: Stable processes and their applications[J]. Proceedings of the IEEE, 1993, 81(7): 986–1010. doi:  10.1109/5.231338
    [2] NIKIAS C L and SHAO M. Signal Processing with Alpha-Stable Distributions and Applications[M]. New York: Wiley, 1995: 1–3.
    [3] LIU Weifeng, POKHAREL P P, and PRINCIPE J C. Correntropy: A localized similarity measure[C]. 2006 IEEE International Joint Conference on Neural Network Proceedings, Vancouver, Canada, 2006: 4919–4924.
    [4] GUNDUZ A and PRINCIPE J C. Correntropy as a novel measure for nonlinearity tests[J]. Signal Processing, 2009, 89(1): 14–23. doi:  10.1016/j.sigpro.2008.07.005
    [5] LIU Weifeng, POKHAREL P P, and PRINCIPE J C. Correntropy: Properties and applications in non-Gaussian signal processing[J]. IEEE Transactions on Signal Processing, 2007, 55(11): 5286–5298. doi:  10.1109/TSP.2007.896065
    [6] LUAN Shengyang, QIU Tianshuang, ZHU Yongjie, et al. Cyclic correntropy and its spectrum in frequency estimation in the presence of impulsive noise[J]. Signal Processing, 2016, 1204: 503–508.
    [7] FONTES A I R, REGO J B A, DE M MARTINS A, et al. Cyclostationary correntropy: Definition and applications[J]. Expert Systems with Applications, 2017, 69: 110–117. doi:  10.1016/j.eswa.2016.10.029
    [8] MILLER G. Properties of certain symmetric stable distributions[J]. Journal of Multivariate Analysis, 1978, 8(3): 346–360. doi:  10.1016/0047-259X(78)90058-1
    [9] CAMBANIS S and MILLER G. Linear problems in p-th order and stable processes[J]. SIAM Journal on Applied Mathematics, 1981, 41(1): 43–69. doi:  10.1137/0141005
    [10] 郭莹, 邱天爽. 基于分数低阶统计量的盲多用户检测算法[J]. 电子学报, 2007, 35(9): 1670–1674. doi:  10.3321/j.issn:0372-2112.2007.09.011

    GUO Ying and QIU Tianshuang. Blind multiuser detector based on FLOS in impulse noise environment[J]. Acta Electronica Sinica, 2007, 35(9): 1670–1674. doi:  10.3321/j.issn:0372-2112.2007.09.011
    [11] MA Xinyu and NIKIAS C L. Joint estimation of time delay and frequency delay in impulsive noise using fractional lower order statistics[J]. IEEE Transactions on Signal Processing, 1996, 44(11): 2669–2687. doi:  10.1109/78.542175
    [12] 邱天爽, 王宏禹, 孙永梅. 一种基于分数低阶协方差的自适应EP潜伏期变化检测方法[J]. 电子学报, 2004, 32(1): 91–95. doi:  10.3321/j.issn:0372-2112.2004.01.022

    QIU Tianshuang, WANG Hongyu, and SUN Yongmei. A fractional lower-order covariance based adaptive latency change detection for evoked potentials[J]. Acta Electronica Sinica, 2004, 32(1): 91–95. doi:  10.3321/j.issn:0372-2112.2004.01.022
    [13] KONG Xuan and QIU Tianshuang. Adaptive estimation of latency change in evoked potentials by direct least mean p-norm time-delay estimation[J]. IEEE Transactions on Biomedical Engineering, 1999, 46(8): 994–1003. doi:  10.1109/10.775410
    [14] LIU T H and MENDEL J M. A subspace-based direction finding algorithm using fractional lower order statistics[J]. IEEE Transactions on Signal Processing, 2001, 49(8): 1605–1613. doi:  10.1109/78.934131
    [15] GEORGIOU P G, TSAKALIDES P, and KYRIAKAKIS C. Alpha-stable modeling of noise and robust time-delay estimation in the presence of impulsive noise[J]. IEEE Transactions on Multimedia, 1999, 1(3): 291–301. doi:  10.1109/6046.784467
    [16] SANTAMARIA I, POKHAREL P P, and PRINCIPE J C. Generalized correlation function: Definition, properties, and application to blind equalization[J]. IEEE Transactions on Signal Processing, 2006, 54(6): 2187–2197. doi:  10.1109/TSP.2006.872524
    [17] VAPNIK V N. The Nature of Statistical Learning Theory[M]. New York: Springer Verlag, 1995: 2-4.
    [18] BACH F R and JORDAN M I. Kernel independent component analysis[J]. Journal of Machine Learning Research, 2002, 3: 1–48.
    [19] PRINCIPE J C. Information Theoretic Learning: Renyi’s Entropy and Kernel Perspectives[M]. New York: Wiley, 1988: 1.
    [20] POKHAREL P P, LIU Weifeng, and PRINCIPE J C. A low complexity robust detector in impulsive noise[J]. Signal Processing, 2009, 89(10): 1902–1909. doi:  10.1016/j.sigpro.2009.03.027
    [21] PARZEN E. On estimation of a probability density function and mode[J]. The Annals of Mathematical Statistics, 1962, 33(3): 1065–1076. doi:  10.1214/aoms/1177704472
    [22] HUBER P J. Robust Statistics[M]. New York: Wiley, 1981: 1–2.
    [23] GARDE A, SÖRNMO L, JANÉ R, et al. Correntropy-based spectral characterization of respiratory patterns in patients with chronic heart failure[J]. IEEE Transactions on Biomedical Engineering, 2010, 57(8): 1964–1972. doi:  10.1109/TBME.2010.2044176
    [24] SINGH A and PRINCIPE J C. Using correntropy as a cost function in linear adaptive filters[C]. 2009 International Joint Conference on Neural Networks, Atlanta, USA, 2009: 2950–2955.
    [25] 宋爱民, 邱天爽, 佟祉谏. 对称稳定分布的相关熵及其在时间延迟估计上的应用[J]. 电子与信息学报, 2011, 33(2): 494–498.

    SONG Aimin, QIU Tianshuang, and TONG Zhijian. Correntropy of the symmetric stable distribution and its application to the time delay estimation[J]. Journal of Electronics &Information Technology, 2011, 33(2): 494–498.
    [26] WANG Lingfeng and PAN Chunhong. Robust level set image segmentation via a local correntropy-based K-means clustering[J]. Pattern Recognition, 2014, 47(5): 1917–1925. doi:  10.1016/j.patcog.2013.11.014
    [27] JIN Fangxiao and QIU Tianshuang. Adaptive time delay estimation based on the maximum correntropy criterion[J]. Digital Signal Processing, 2019, 88: 23–32. doi:  10.1016/j.dsp.2019.01.014
    [28] PENG Siyuan, CHEN Badong, SUN Lei, et al. Constrained maximum correntropy adaptive filtering[J]. Signal Processing, 2017, 140: 116–126. doi:  10.1016/j.sigpro.2017.05.009
    [29] LI Yingsong, JIANG Zhengxiong, SHI Wanlu, et al. Blocked maximum correntropy criterion algorithm for cluster-sparse system identifications[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 66(11): 1915–1919. doi:  10.1109/TCSII.2019.2891654
    [30] GUIMARÃES J P F, FONTES A I R, REGO J B A, et al. Complex correntropy: Probabilistic interpretation and application to complex-valued data[J]. IEEE Signal Processing Letters, 2017, 24(1): 42–45. doi:  10.1109/LSP.2016.2634534
    [31] 朝乐蒙, 邱天爽, 李景春, 等. 广义复相关熵与相干分布式非圆信号DOA估计[J]. 信号处理, 2019, 35(5): 795–801.

    CHAO Lemeng, QIU Tianshuang, LI Jingchun, et al. Generalized complex correntropy and DOA estimation for coherently distributed noncircular sources[J]. Journal of Signal Processing, 2019, 35(5): 795–801.
    [32] CHEN Badong, XING Lei, ZHAO Haiquan, et al. Generalized correntropy for robust adaptive filtering[J]. IEEE Transactions on Signal Processing, 2016, 64(13): 3376–3387. doi:  10.1109/TSP.2016.2539127
    [33] LUO Xiong, SUN Jiankun, WANG Long, et al. Short-term wind speed forecasting via stacked extreme learning machine with generalized correntropy[J]. IEEE Transactions on Industrial Informatics, 2018, 14(11): 4963–4971. doi:  10.1109/TII.2018.2854549
    [34] ZHAO Ji and ZHANG Hongbin. Kernel recursive generalized maximum correntropy[J]. IEEE Signal Processing Letters, 2017, 24(12): 1832–1836. doi:  10.1109/LSP.2017.2761886
    [35] CHEN Liangjun, QU Hua, and ZHAO Jihong. Generalized correntropy based deep learning in presence of non-Gaussian noises[J]. Neurocomputing, 2018, 278: 41–50. doi:  10.1016/j.neucom.2017.06.080
    [36] GIANNAKIS G B and ZHOU GUOTONG. Harmonics in multiplicative and additive noise: Parameter estimation using cyclic statistics[J]. IEEE Transactions on Signal Processing, 1995, 43(9): 2217–2221. doi:  10.1109/78.414790
    [37] GHOGHO M, SWAMI A, and GAREL B. Performance analysis of cyclic statistics for the estimation of harmonics in multiplicative and additive noise[J]. IEEE Transactions on Signal Processing, 1999, 47(12): 3235–3249. doi:  10.1109/78.806069
    [38] NAPOLITANO A. Cyclostationarity: New trends and applications[J]. Signal Processing, 2016, 120: 385–408. doi:  10.1016/j.sigpro.2015.09.011
    [39] LIU Tao, QIU Tianshuang, and LUAN Shengyang. Cyclic Correntropy: Foundations and theories[J]. IEEE Access, 2018, 6: 34659–34669. doi:  10.1109/ACCESS.2018.2847346
    [40] MA Jitong and QIU Tianshuang. Automatic modulation classification using cyclic correntropy spectrum in impulsive noise[J]. IEEE Wireless Communications Letters, 2019, 8(2): 440–443. doi:  10.1109/LWC.2018.2875001
    [41] LIU Tao, QIU Tianshuang, and LUAN Shengyang. Cyclic frequency estimation by compressed cyclic correntropy spectrum in impulsive noise[J]. IEEE Signal Processing Letters, 2019, 26(6): 888–892. doi:  10.1109/LSP.2019.2910928
    [42] JIN Fangxiao, QIU Tianshuang, and LIU Tao. Robust cyclic beamforming against cycle frequency error in Gaussian and impulsive noise environments[J]. AEU-International Journal of Electronics and Communications, 2019, 99: 153–160. doi:  10.1016/j.aeue.2018.11.035
    [43] GARDNER W A. The spectral correlation theory of cyclostationary time-series[J]. Signal Processing, 1986, 11(1): 13–36. doi:  10.1016/0165-1684(86)90092-7
    [44] GARDNER W A, NAPOLITANO A, and PAURA L. Cyclostationarity: Half a century of research[J]. Signal Processing, 2006, 86(4): 639–697. doi:  10.1016/j.sigpro.2005.06.016
    [45] 郭莹, 邱天爽, 张艳丽, 等. 脉冲噪声环境下基于分数低阶循环相关的自适应时延估计方法[J]. 通信学报, 2007, 28(3): 8–14. doi:  10.3321/j.issn:1000-436X.2007.03.002

    GUO Ying, QIU Tianshuang, ZHANG Yanli, et al. Novel adaptive time delay estimation method based on the fractional lower order cyclic correlation in impulsive noise environment[J]. Journal on Communications, 2007, 28(3): 8–14. doi:  10.3321/j.issn:1000-436X.2007.03.002
    [46] LIU Yang, QIU Tianshuang, and SHENG Hu. Time-difference-of-arrival estimation algorithms for cyclostationary signals in impulsive noise[J]. Signal Processing, 2012, 92(9): 2238–2247. doi:  10.1016/j.sigpro.2012.02.016
    [47] KWON H and NASRABADI N M. Hyperspectral target detection using kernel matched subspace detector[C]. 2004 International Conference on Image Processing (ICIP), Singapore, 2004: 3327–3330.
    [48] ERDOGMUS D, AGRAWAL R, and PRINCIPE J C. A mutual information extension to the matched filter[J]. Signal Processing, 2005, 85(5): 927–935. doi:  10.1016/j.sigpro.2004.11.018
    [49] JEONG K H, LIU Weifeng, HAN S, et al. The correntropy MACE filter[J]. Pattern Recognition, 2009, 42(5): 871–885. doi:  10.1016/j.patcog.2008.09.023
    [50] ZHAO Songlin, CHEN Badong, and PRÍNCIPE J C. Kernel adaptive filtering with maximum correntropy criterion[C]. 2011 International Joint Conference on Neural Networks, San Jose, USA, 2011: 2012–2017.
    [51] CHEN Badong and PRINCIPE J C. Maximum correntropy estimation is a smoothed MAP estimation[J]. IEEE Signal Processing Letters, 2012, 19(8): 491–494. doi:  10.1109/LSP.2012.2204435
    [52] CHEN Badong, XING Lei, LIANG Junli, et al. Steady-state mean-square error analysis for adaptive filtering under the maximum correntropy criterion[J]. IEEE Signal Processing Letters, 2014, 21(7): 880–884. doi:  10.1109/LSP.2014.2319308
    [53] WU Zongze, SHI Jiahao, ZHANG Xie, et al. Kernel recursive maximum correntropy[J]. Signal Processing, 2015, 117: 11–16. doi:  10.1016/j.sigpro.2015.04.024
    [54] CHEN Badong, LIU Xi, ZHAO Haiquan, et al. Maximum correntropy Kalman filter[J]. Automatica, 2017, 76: 70–77. doi:  10.1016/j.automatica.2016.10.004
    [55] LIU Xi, CHEN Badong, ZHAO Haiquan, et al. Maximum correntropy Kalman filter with state constraints[J]. IEEE Access, 2017, 5: 25846–25853. doi:  10.1109/ACCESS.2017.2769965
    [56] LIU Xi, CHEN Badong, XU Bin, et al. Maximum correntropy unscented filter[J]. International Journal of Systems Science, 2017, 48(8): 1607–1615. doi:  10.1080/00207721.2016.1277407
    [57] LIU Xi, QU Hua, ZHAO Jihong, et al. Maximum correntropy unscented Kalman filter for spacecraft relative state estimation[J]. Sensors, 2016, 16(9): 1530. doi:  10.3390/s16091530
    [58] KRIM H and VIBERG M. Two decades of array signal processing research: The parametric approach[J]. IEEE Signal Processing Magazine, 1996, 13(4): 67–94. doi:  10.1109/79.526899
    [59] YOU Guohong, QIU Tianshuang, and YANG Jiao. A novel DOA estimation algorithm of cyclostationary signal based on UCA in impulsive noise[J]. AEU-International Journal of Electronics and Communications, 2013, 67(6): 491–499. doi:  10.1016/j.aeue.2012.11.006
    [60] ZHANG Jingfeng, QIU Tianshuang, SONG Aimin, et al. A novel correntropy based DOA estimation algorithm in impulsive noise environments[J]. Signal Processing, 2014, 104: 346–357. doi:  10.1016/j.sigpro.2014.04.033
    [61] 王鹏, 邱天爽, 任福全, 等. 对称稳定分布噪声下基于广义相关熵的DOA估计新方法[J]. 电子与信息学报, 2016, 38(8): 2007–2013.

    WANG Peng, QIU Tianshuang, REN Fuquan, et al. A novel generalized correntropy based method for direction of arrival estimation in symmetric alpha stable noise environments[J]. Journal of Electronics &Information Technology, 2016, 38(8): 2007–2013.
    [62] WANG Peng, QIU Tianshuang, REN Fuquan, et al. A robust DOA estimator based on the correntropy in alpha-stable noise environments[J]. Digital Signal Processing, 2017, 60: 242–251. doi:  10.1016/j.dsp.2016.10.002
    [63] 王鹏, 邱天爽, 金芳晓, 等. 脉冲噪声下基于稀疏表示的韧性DOA估计方法[J]. 电子学报, 2018, 46(7): 1537–1544. doi:  10.3969/j.issn.0372-2112.2018.07.001

    WANG Peng, QIU Tianhsuang, JIN Fangxiao, et al. A robust DOA estimation method based on sparse representation for impulsive noise environments[J]. Acta Electronica Sinica, 2018, 46(7): 1537–1544. doi:  10.3969/j.issn.0372-2112.2018.07.001
    [64] KNAPP C and CARTER G C. The generalized correlation method for estimation of time delay[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1976, 24(4): 320–327. doi:  10.1109/TASSP.1976.1162830
    [65] CARTER G C. Time delay estimation for passive sonar signal processing[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981, 29(3): 463–470. doi:  10.1109/TASSP.1981.1163560
    [66] WANG Gang and HO K C. Convex relaxation methods for unified near-field and far-field TDOA-based localization[J]. IEEE Transactions on Wireless Communications, 2019, 18(4): 2346–2360. doi:  10.1109/TWC.2019.2903037
    [67] YU Ling, QIU Tianshuang, and LUAN Shengyang. Fractional time delay estimation algorithm based on the maximum correntropy criterion and the Lagrange FDF[J]. Signal Processing, 2015, 111: 222–229. doi:  10.1016/j.sigpro.2014.12.018
    [68] LUO Yuanzhe, SUN Guolu, ZHANG Xiaotong, et al. Adaptive time-delay estimation based on normalized maximum correntropy criterion for near-field electromagnetic ranging[J]. Computers & Electrical Engineering, 2018, 67: 404–414.
    [69] CHEN Xing, QIU Tianshuang, LIU Cheng, et al. TDOA estimation algorithm based on generalized cyclic correntropy in impulsive noise and cochannel interference[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2018, 101-A(10): 1625–1630.
    [70] LI Sen, LIN Bin, DING Yabo, et al. Signal-selective time difference of arrival estimation based on generalized cyclic correntropy in impulsive noise environments[C]. The 13th International Conference on Wireless Algorithms, Systems, and Applications, Tianjin, China, 2018: 274–283.
    [71] HE Ran, ZHENG Weishi, and HU Baogang. Maximum correntropy criterion for robust face recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1561–1576. doi:  10.1109/TPAMI.2010.220
    [72] ZHOU Sanping, WANG Jinjun, ZHANG Mengmeng, et al. Correntropy-based level set method for medical image segmentation and bias correction[J]. Neurocomputing, 2017, 234: 216–229. doi:  10.1016/j.neucom.2017.01.013
    [73] PENG Jiangtao and DU Qian. Robust joint sparse representation based on maximum correntropy criterion for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12): 7152–7164. doi:  10.1109/TGRS.2017.2743110
    [74] HASSAN M, TERRIEN J, MARQUE C, et al. Comparison between approximate entropy, correntropy and time reversibility: Application to uterine electromyogram signals[J]. Medical Engineering & Physics, 2011, 33(8): 980–986.
    [75] BARQUERO-PÉREZ O, SÖRNMO L, GOYA-ESTEBAN R, et al. Fundamental frequency estimation in atrial fibrillation signals using correntropy and Fourier organization analysis[C]. The 3rd International Workshop on Cognitive Information Processing (CIP), Baiona, Spain, 2012: 1–6.
    [76] NAPOLITANO A. Cyclostationarity: Limits and generalizations[J]. Signal Processing, 2016, 120: 323–347. doi:  10.1016/j.sigpro.2015.09.013
    [77] ZHAO Xuejun, QIN Yong, HE Changbo, et al. Rolling element bearing fault diagnosis under impulsive noise environment based on cyclic correntropy spectrum[J]. Entropy, 2019, 21(1): 50. doi:  10.3390/e21010050
    [78] HUIJSE P, ESTEVEZ P A, ZEGERS P, et al. Period estimation in astronomical time series using slotted correntropy[J]. IEEE Signal Processing Letters, 2011, 18(6): 371–374. doi:  10.1109/LSP.2011.2141987
    [79] DUAN Jiandong, QIU Xinyu, MA Wentao, et al. Electricity consumption forecasting scheme via improved LSSVM with maximum correntropy criterion[J]. Entropy, 2018, 20(2): 112. doi:  10.3390/e20020112
  • [1] 赵知劲, 陈思佳.  基于高斯核显性映射的核归一化解相关仿射投影P范数算法, 电子与信息学报. doi: 10.11999/JEIT190602
    [2] 吴超, 李雅倩, 张亚茹, 刘彬.  用于表示级特征融合与分类的相关熵融合极限学习机, 电子与信息学报. doi: 10.11999/JEIT190186
    [3] 张家成, 邱天爽, 栾声扬, 李景春, 李蓉.  脉冲噪声下基于循环相关熵和稀疏重构的宽带信号DOA估计, 电子与信息学报. doi: 10.11999/JEIT190521
    [4] 王鹏, 邱天爽, 任福全, 李景春, 谭海峰.  对称稳定分布噪声下基于广义相关熵的DOA估计新方法, 电子与信息学报. doi: 10.11999/JEIT151217
    [5] 宋靖, 周青松, 张剑云.  基于相关法的分布式全相参雷达相干参数估计及相参性能, 电子与信息学报. doi: 10.11999/JEIT141339
    [6] 黄岩, 廖桂生, 李军, 李婕.  基于连续差联合阵列的非等距线阵无模糊波束形成方法, 电子与信息学报. doi: 10.11999/JEIT150321
    [7] 程增飞, 赵永波, 水鹏朗, 徐保庆.  基于稀疏表示的不相关分布式信源参数估计算法, 电子与信息学报. doi: 10.11999/JEIT150340
    [8] 毛琳琳, 张群飞, 黄建国, 史文涛, 韩晶.  基于互相关协方差矩阵的改进多重信号分类高分辨波达方位估计方法, 电子与信息学报. doi: 10.11999/JEIT141208
    [9] 杨学敏, 李广军, 郑植.  基于稀疏表示的相干分布式非圆信号的参数估计, 电子与信息学报. doi: 10.3724/SP.J.1146.2013.00444
    [10] 田鹏武, 康荣宗, 于宏毅.  非均匀块稀疏信号的压缩采样与盲重构算法, 电子与信息学报. doi: 10.3724/SP.J.1146.2012.00598
    [11] 刘明骞, 李兵兵, 曹超凤.  非高斯噪声下数字调制信号识别方法, 电子与信息学报. doi: 10.3724/SP.J.1146.2012.00735
    [12] 肖玮, 涂亚庆, 刘良兵, 莫正军.  频率估计的一种多段同频正弦信号频谱相关算法, 电子与信息学报. doi: 10.3724/SP.J.1146.2011.00665
    [13] 郭黎利, 周彬, 孙志国, 刘湘蒲.  对称升余弦键控信号相关性分析, 电子与信息学报. doi: 10.3724/SP.J.1146.2011.01361
    [14] 郭业才, 龚秀丽, 张艳萍.  基于样条函数Renyi熵的时间分集小波盲均衡算法, 电子与信息学报. doi: 10.3724/SP.J.1146.2011.00110
    [15] 谢洪森, 邹鲲.  一种非均匀场景复合高斯杂波下的自适应检测器, 电子与信息学报. doi: 10.3724/SP.J.1146.2010.01412
    [16] 宋爱民, 邱天爽, 佟祉谏.  对称稳定分布的相关熵及其在时间延迟估计上的应用, 电子与信息学报. doi: 10.3724/SP.J.1146.2010.00309
    [17] 和洁, 冯大政, 吕晖, 向聪.  基于相关域的二维自适应波束形成算法, 电子与信息学报. doi: 10.3724/SP.J.1146.2009.01500
    [18] 蔡卫光, 姚庆栋, 刘鹏.  RISC-DSP处理器中指令数据相关性的提前判断方法, 电子与信息学报. doi: 10.3724/SP.J.1146.2010.00102
    [19] 杜秀丽, 沈毅, 王艳.  基于熵的Gabor变换窗函数宽度自适应选择算法, 电子与信息学报. doi: 10.3724/SP.J.1146.2007.00534
    [20] 王传丹, 张忠培, 李少谦.  变换域通信系统中干扰信号的逐次消除, 电子与信息学报. doi: 10.3724/SP.J.1146.2007.00494
  • 加载中
  • 图(2)
    计量
    • 文章访问数:  1006
    • HTML全文浏览量:  622
    • PDF下载量:  114
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-08-28
    • 修回日期:  2019-11-05
    • 网络出版日期:  2019-11-12
    • 刊出日期:  2020-01-21

    目录

      /

      返回文章
      返回

      官方微信,欢迎关注