高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种人与人和物到物业务共存下的异构蜂窝网络柔性接入策略

田辉 何雷 马文峰 王聪

田辉, 何雷, 马文峰, 王聪. 一种人与人和物到物业务共存下的异构蜂窝网络柔性接入策略[J]. 电子与信息学报, 2020, 42(8): 1918-1925. doi: 10.11999/JEIT190676
引用本文: 田辉, 何雷, 马文峰, 王聪. 一种人与人和物到物业务共存下的异构蜂窝网络柔性接入策略[J]. 电子与信息学报, 2020, 42(8): 1918-1925. doi: 10.11999/JEIT190676
Hui TIAN, Lei HE, Wenfeng MA, Cong WANG. A Flexible Network Access Scheme in Heterogeneous Cell Networks with H2H and M2M Coexistence[J]. Journal of Electronics and Information Technology, 2020, 42(8): 1918-1925. doi: 10.11999/JEIT190676
Citation: Hui TIAN, Lei HE, Wenfeng MA, Cong WANG. A Flexible Network Access Scheme in Heterogeneous Cell Networks with H2H and M2M Coexistence[J]. Journal of Electronics and Information Technology, 2020, 42(8): 1918-1925. doi: 10.11999/JEIT190676

一种人与人和物到物业务共存下的异构蜂窝网络柔性接入策略

doi: 10.11999/JEIT190676
基金项目: 国家自然科学基金(61771486, 61671472),江苏省博士后科研资助计划项目(2019K090)
详细信息
    作者简介:

    田辉:男,1987年生,讲师,研究方向为M2M通信、资源分配、协同通信

    何雷:男,1978年生,讲师,研究方向为无人机智能平台、无线通信网络、军事运筹学

    马文峰:男,1974年生,副教授,研究方向为物联网、5G通信

    王聪:男,1975年生,副教授,研究方向为物联网、计算机网络

    通讯作者:

    田辉 jaytianhui@163.com

  • 1)本文中主要考虑业务对带宽资源的需求。
  • 2)每一个代理节点按照其行为概率分布将0~1区间范围内,划分成不同的区域,其中每个行为对应的区域大小等于其概率。然后,代理节点产生一个0和1之间的随机数,选择随机数位于区域所对应的行为。
  • 中图分类号: TN915.04

A Flexible Network Access Scheme in Heterogeneous Cell Networks with H2H and M2M Coexistence

Funds: The National Natural Science Foundation of China (61771486, 61671472), Jiangsu Planned Projects for Postdoctoral Research Funds (2019K090)
  • 摘要:

    针对人与人(H2H)和物到物(M2M)业务共存的异构无线网络,该文设计了一种根据业务特性的代理节点的网络选择策略,用博弈论对以保障两类业务服务质量(QoS)需求和网络负载均衡为目标的代理节点网络选择问题进行建模,并分析了该博弈模型纳什均衡(NE)的存在性和可行性;同时,提出了基于学习自动机的分布式网络-信道选择算法(DNCSALA),求得该博弈的纳什均衡。仿真结果表明,所提算法能够获得与穷举搜索算法相近的性能,可满足共存场景中不同类型业务的QoS需求并提高网络资源利用率。

    1)  1)本文中主要考虑业务对带宽资源的需求。
    2)  2)每一个代理节点按照其行为概率分布将0~1区间范围内,划分成不同的区域,其中每个行为对应的区域大小等于其概率。然后,代理节点产生一个0和1之间的随机数,选择随机数位于区域所对应的行为。
  • 图  1  刚性业务与柔性业务满意度随分配带宽变化仿真图

    图  2  DNCSALA中刚性代理节点4的行动概率进化曲线图,(${\gamma ^{\rm ave}} = 5$ dB, ${M_f} = 4$, ${M_r} = 4$, ${{{b}}_{\rm req}} = \{ 0.5,0.6,0.7,0.7\} $)

    图  3  不同算法下全网和收益随SNR变化曲线图(仿真参数同图2)

    图  4  不同算法的满意度性能对比柱状图(仿真参数同图2)

    图  5  不同算法的负载均衡指数对比柱状图(仿真参数同图2)

    表  1  基于学习自动机的分布式网络选择算法(DNCSALA)

     (1) 首先,初始化每个代理节点第0时刻的行为概率分布${ {{p} }_i}(0)$为$p_{ik}^j(0) = {1 / {\left(1 + \displaystyle\sum\nolimits_{j \in {\cal{N}}} {{K_j}} \right)}}$, $\forall i \in {\cal M},j \in {\cal N}$。每一个代理节点根据自   己的行为概率分布${ {{p} }_i}(0)$选择一个行为
     (2) 在每一个时刻$t > 0$,每一个代理节点都根据当前时刻的概率分布${ {{p} }_i}(0)$选择一个行为(${s_i}(t)$);
     (3) 基站根据所有代理节点的行为,计算出收益,并将其广播给所有代理节点;
     (4) 在获得反应函数之后,每一个代理节点根据式(16),更新自己的行为概率分布, 其中$0 < {\zeta ^s} < 1$表示步长参数;
       $\left. \begin{aligned} & {p_{ik}^j(t + 1) = p_{ik}^j(t) - {\zeta ^s}{\gamma _i}(t)p_{ik}^j(t),\quad \quad \quad\quad {s_i}(t) \ne {\rm{CH} }_{ik}^j} \\ & {p_{ik}^j(t + 1) = p_{ik}^j(t) + {\zeta ^s}{\gamma _i}(t)(1 - p_{ik}^j(t)),\quad \;\,{s_i}(t) = {\rm{CH} }_{ik}^j} \end{aligned} \right\}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\qquad\qquad (16)$
     (5) 如果对于任意$i \in {\cal M}$, 其行为概率分布存在一个元素接近1,确切地说等于0.99,那么算法停止。否则,跳转到步骤(2)。
    下载: 导出CSV
  • AGIWAL M, ROY A, and SAXENA N. Next generation 5G wireless networks: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2016, 18(3): 1617–1655. doi: 10.1109/COMST.2016.2532458
    AKPAKWU G A, SILVA B J, HANCKE G P, et al. A survey on 5G networks for the Internet of Things: Communication technologies and challenges[J]. IEEE Access, 2018(6): 3619–3647. doi: 10.1109/ACCESS.2017.2779844
    WANG Hai and ABRAHAM O F. A survey of enabling technologies of low power and long range Machine-to-Machine communications[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2621–2639. doi: 10.1109/COMST.2017.2721379
    XIA Nian, CHEN H H, and YANG C S. Radio resource management in Machine-to-Machine communications-a survey[J]. IEEE Communications Surveys & Tutorials, 2018, 20(1): 791–828. doi: 10.1109/COMST.2017.2765344
    李宁, 林家儒. CDMA/OFDMA异构网络中最小化中断概率的网络选择方案[J]. 电子与信息学报, 2011, 33(12): 2965–2970. doi: 10.3724/SP.J.1146.2011.00387

    LI Ning and LIN Jiaru. Network selection strategy for minimizing outage probability in CDMA/OFDMA heterogeneous networks[J]. Journal of Electronics &Information Technology, 2011, 33(12): 2965–2970. doi: 10.3724/SP.J.1146.2011.00387
    KUMAR A, MALLIK R K, and SCHOBER R. A probabilistic approach to modeling users’ network selection in the presence of heterogeneous wireless networks[J]. IEEE Transactions on Vehicular Technology, 2014, 63(7): 3331–3341. doi: 10.1109/TVT.2013.2297437
    DU Zhiyong, WU Qihui, and YANG Panlong. Dynamic user demand driven online network selection[J]. IEEE Communications Letters, 2014, 18(3): 419–422. doi: 10.1109/LCOMM.2014.011214.132617
    杜白, 李红艳, 龙彦. 最小最大剩余服务时间的异构网络选择算法[J]. 通信学报, 2015, 36(8): 104–109. doi: 10.11959/j.issn.1000-436x.2015231

    DU Bai, LI Hongyan, and LONG Yan. Network selection algorithm in heterogeneous wireless networks to minimize the maximum residual service time[J]. Journal on Communications, 2015, 36(8): 104–109. doi: 10.11959/j.issn.1000-436x.2015231
    TSENG L C, CHIEN F T, ZHANG Daqiang, et al. Network selection in cognitive heterogeneous networks using stochastic learning[J]. IEEE Communications Letters, 2013, 17(12): 2304–2307. doi: 10.1109/LCOMM.2013.102113.131876
    KWON T and CHOI J W. Multi-group random access resource allocation for M2M devices in multicell systems[J]. IEEE Communications Letters, 2012, 16(6): 834–837. doi: 10.1109/LCOMM.2012.041112.112568
    LIU Dantong, CHEN Yue, CHAI K K, et al. Opportunistic user association for multi-service HetNets using Nash bargaining solution[J]. IEEE Communications Letters, 2014, 18(3): 463–466. doi: 10.1109/LCOMM.2014.012314.140090
    LIU Yi, YUEN C, CAO Xianghui, et al. Design of a scalable hybrid MAC protocol for heterogeneous M2M networks[J]. IEEE Internet of Things Journal, 2014, 1(1): 99–111. doi: 10.1109/JIOT.2014.2310425
    HUANG Yao, TIAN Hui, ZHANG Jie, et al. Rate allocation scheme for Machine-to-Machine service based on 3GPP in heterogeneous wireless networks[J]. China Communications, 2013, 10(9): 65–71. doi: 10.1109/CC.2013.6623504
    NESSA A, KADOCH M, and RONG Bo. Fountain coded cooperative communications for LTE-A connected heterogeneous M2M network[J]. IEEE Access, 2016(4): 5280–5292. doi: 10.1109/ACCESS.2016.2601031
    SHAFIQ M Z, JI Lusheng, LIU A X, et al. Large-scale measurement and characterization of cellular Machine-to-Machine traffic[J]. IEEE/ACM Transactions on Networking, 2013, 21(6): 1960–1973. doi: 10.1109/TNET.2013.2256431
    YE Qiaoyang, RONG Beiyu, CHEN Yudong, et al. User association for load balancing in heterogeneous cellular networks[J]. IEEE Transactions on Wireless Communications, 2013, 12(6): 2706–2716. doi: 10.1109/TWC.2013.040413.120676
    钟卫. 有限反馈认知无线电动态频谱共享技术研究[D]. [博士论文], 上海交通大学, 2011.

    ZHONG Wei. Limited feedback dynamic spectrum sharing in cognitive radio systems[D]. [Ph.D. dissertation], Shanghai Jiao Tong University, 2011.
    MONDERER D and SHAPLEY L S. Potential games[J]. Games and Economic Behavior, 1996, 14(1): 124–143. doi: 10.1006/game.1996.0044
    SASTRY P S, PHANSALKAR V V, and THATHACHAR M A L. Decentralized learning of Nash equilibria in multi-person stochastic games with incomplete information[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1994, 24(5): 769–777. doi: 10.1109/21.293490
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  980
  • HTML全文浏览量:  467
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-03
  • 修回日期:  2020-02-16
  • 网络出版日期:  2020-03-12
  • 刊出日期:  2020-08-18

目录

    /

    返回文章
    返回

    官方微信,欢迎关注