Research on the Collaborative Beamforming Technique Based on the Node Selection for Satellite Internet of Things
-
摘要: 针对卫星物联网(IoT)场景下信号长距离传输衰减大以及单个终端节点传输性能受限的问题,该文提出一种基于节点选择的协作波束成形算法,增强终端节点的传输能力。在实际终端位置信息存在误差的条件下,推导出了协作波束成形平均方向图函数,分析了不同系统参数对于协作波束成形平均方向图和瞬时方向图差异的影响。在此基础上,根据卫星物联网链路传输性能需求,提出一种区域分组优化的协作节点选择算法。仿真结果表明,相比于传统的分布式协作波束成形节点选择算法,该文提出的算法在实际的误差模型中旁瓣抑制和零陷生成方面具有更好的性能。Abstract: The transmission performance of nodes in the satellite Internet of Things(IoT) is limited due to the long-distance transmission and the power-constrained terminal. A collaborative beamforming technique is proposed based on the node selection algorithm to improve the transmission performance of nodes. An average far-field beampattern for collaborative beamforming is derived by considering the location information error in practical scenario. Furthermore, the difference between average beampattern and instantaneous beampattern is analyzed by the system parameters. On this basis, a node selection algorithm is proposed based on region grouping not only to meet the requirement of satellite link, but also to suppress the sidelobe. Simulation results show better performance of the proposed algorithm compared with the traditional node selection algorithms in the actural error model.
-
表 1 区域分组节点选择算法
${\rm{List}}m$=[]:存放$[{A_m}\sim {A_{m + k - 1}}]$中节点集合;${\rm{List}}m'$=[]:存放$[{A_{M + m}}\sim {A_{M + m + k - 1}}]$中节点集合; ${\rm{List}}C$=[]:存放$[{A_m}\sim {A_{m + k - 1}}]$中用于协作传输节点集合;${\rm{List}}C'$=[]:存放$[{A_{M + m}}\sim {A_{M + m + k - 1}}]$中用于协作传输节点集合; ${\rm{List}}F$=[]:存放代价函数值的集合;初始随机产生$S$个节点:${P_s}({r_s},{\phi _s}),\;s = 1,2,···,S$; $S$:源节点覆盖节点数;$M$:分组对数;$N$:协作波束成形节点数;$E$:迭代次数; For $s$=1 to $S$ do For $m$=1 to $M$ do If ${\phi _s} \in [\phi {A_m}\sim \phi {A_{m + k - 1}}]$ then ${\rm{List}}m$=${\rm{List}}m$+${P_s}$; End If ${\phi _s} \in [\phi {A_{M + m}}\sim \phi {A_{M + m + k - 1}}]$ then ${\rm{List}}m'$=${\rm{List}}m'$+${P_s}$; End End End For $e$=1 to $E$ do For $m$=1 to $M$ do 从${\rm{List}}m$中随机选择${{[N} / {\rm{2}}}]$或${{[(N + 1)} / {\rm{2}}}]$个节点放入${\rm{List}}C$中; 从${\rm{List}}m'$中随机选择${{[N} / {\rm{2}}}]$或${{[(N + 1)} / {\rm{2}}}]$个节点放入${\rm{List}}C'$中; 根据${\rm{List}}C$和${\rm{List}}C'$中的节点计算代价函数${f_m}$; End ${\rm{List}}F$=${\rm{List}}F + {f_m}$; End Find(min(${\rm{List}}F$(average)))$\xrightarrow{{}}$$\{ {A_{{\rm{best}}}}\sim {A_{{\rm{best}} + k - 1}},{A_{M + {\rm{best}}}}\sim {A_{M + {\rm{best}} + k - 1}}\} $。 表 2 仿真参数设计表
参数 值 卫星轨道高度 $d$=600 km 卫星天线增益 ${G_R}$=25 dBi 卫星品质因数 ${G / T}$=5 ${\rm{dB}}{{\rm{K}}^{ - 1}}$ 空间传播损耗 ${L_f}$=168.7 dB 频率 2.6 GHz 节点天线增益(全向天线) ${G_s}$=0 dBi 节点发射功率 ${P_s}$=10 dBm 调制方式 QPSK 信息速率 ${R_b}$=2048 kbps 无线传感器网络范围 500$ \times $500 m2 网络节点总数 300 源节点覆盖范围 R=100 m,约60个左右 定位误差 $B$=1 m,(约10个波长) 期望/非期望方向 (600 km,${30^{ \circ} }$,${0^{ \circ} }$)/(600 km,${30^{ \circ} }$,${1^{ \circ} }$) -
[1] CIONI S, DE GAUDENZI R, DEL RIO HERRERO O, et al. On the satellite role in the era of 5G massive machine type communications[J]. IEEE Network, 2018, 32(5): 54–61. doi: 10.1109/MNET.2018.1800024 [2] QU Zhicheng, ZHANG Gengxin, CAO Haotong, et al. LEO satellite constellation for internet of things[J]. IEEE Access, 2017, 5: 18391–18401. doi: 10.1109/Access.2017.2735988 [3] XIA Tingting, WANG M M, and YOU Xiaohu. Satellite Machine-type communication for maritime Internet of Things: An interference perspective[J]. IEEE Access, 2019, 7: 76404–76415. doi: 10.1109/Access.2019.2919253 [4] DE SANCTIS M, CIANCA E, ARANITI G, et al. Satellite communications supporting internet of remote things[J]. IEEE Internet of Things Journal, 2016, 3(1): 113–123. doi: 10.1109/JIOT.2015.2487046 [5] CHIEN W C, LAI C F, HOSSAIN M S, et al. Heterogeneous space and terrestrial integrated networks for IoT: Architecture and challenges[J]. IEEE Network, 2019, 33(1): 15–21. doi: 10.1109/MNET.2018.1800182 [6] MUDUMBAI R, BROWN III D R, MADHOW U, et al. Distributed transmit beamforming: Challenges and recent progress[J]. IEEE Communications Magazine, 2009, 47(2): 102–110. doi: 10.1109/MCOM.2009.4785387 [7] JAYAPRAKASAM S, RAHIM S K A, and LEOW C Y. Distributed and collaborative beamforming in wireless sensor networks: Classifications, trends, and research directions[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2092–2116. doi: 10.1109/COMST.2017.2720690 [8] OCHIAI H, MITRAN P, POOR H V, et al. Collaborative beamforming for distributed wireless ad hoc sensor networks[J]. IEEE Transactions on Signal Processing, 2005, 53(11): 4110–4124. doi: 10.1109/tsp.2005.857028 [9] AHMED M F A and VOROBYOV S A. Collaborative beamforming for wireless sensor networks with gaussian distributed sensor nodes[J]. IEEE Transactions on Wireless Communications, 2009, 8(2): 638–643. doi: 10.1109/TWC.2009.071339 [10] JAYAPRAKASAM S, ABDUL RAHIM S K, LEOW C Y, et al. Multiobjective beampattern optimization in collaborative beamforming via NSGA-II with selective distance[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(5): 2348–2357. doi: 10.1109/tap.2017.2684187 [11] AHMED M F A and VOROBYOV S A. Sidelobe control in collaborative beamforming via node selection[J]. IEEE Transactions on Signal Processing, 2010, 58(12): 6168–6180. doi: 10.1109/tsp.2010.2077631 [12] CHEN J C, WEN Chaokai, and WONG K K. An efficient sensor-node selection algorithm for sidelobe control in collaborative beamforming[J]. IEEE Transactions on Vehicular Technology, 2016, 65(8): 5984–5994. doi: 10.1109/TVT.2015.2478898 [13] SUN Geng, LIU Yanheng, WANG Aimin, et al. Sidelobe control by node selection algorithm based on virtual linear array for collaborative beamforming in WSNs[J]. Wireless Personal Communications, 2016, 90(3): 1443–1462. doi: 10.1007/s11277-016-3403-9 [14] SUN Geng, LIU Yanheng, ZHANG Jing, et al. Node selection optimization for collaborative beamforming in wireless sensor networks[J]. Ad Hoc Networks, 2016, 37: 389–403. doi: 10.1016/j.adhoc.2015.08.031 [15] SUN Geng, LIU Yanheng, LIANG Shuang, et al. A sidelobe and energy optimization array node selection algorithm for collaborative beamforming in wireless sensor networks[J]. IEEE Access, 2018, 6: 2515–2530. doi: 10.1109/ACCESS.2017.2783969 [16] 蒋俊正, 李杨剑, 赵海兵, 等. 一种大规模传感器网络节点分布式定位算法[J]. 电子与信息学报, 2019, 41(12): 3022–3028. doi: 10.11999/JEIT181101 JIANG Junzheng, LI Yangjian, ZHAO Haibing, et al. A distributed node localization algorithm for large scale sensor networks[J]. Journal of Electronics &Information Technology, 2019, 41(12): 3022–3028. doi: 10.11999/JEIT181101 [17] 汪晗, 成昂轩, 王坤, 等. 无线传感器网络分布式迭代定位误差控制算法[J]. 电子与信息学报, 2018, 40(1): 72–78. doi: 10.11999/JEIT170344 WANG Han, CHENG Angxuan, WANG Kun, et al. Error control algorithm of distributed localization in wireless sensor networks[J]. Journal of Electronics &Information Technology, 2018, 40(1): 72–78. doi: 10.11999/JEIT170344 [18] KIM Y, LEE B, SO H, et al. Localization technique considering position uncertainty of reference nodes in wireless sensor networks[J]. IEEE Sensors Journal, 2018, 18(3): 1324–1332. doi: 10.1109/JSEN.2017.2782805 [19] STOLERU R, STANKOVIC J A, and SON S H. On composability of localization protocols for wireless sensor networks[J]. IEEE Network, 2008, 22(4): 21–25. doi: 10.1109/MNET.2008.4579767 -