高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于忆阻器的混沌、存储器及神经网络电路研究进展

王春华 蔺海荣 孙晶如 周玲 周超 邓全利

王春华, 蔺海荣, 孙晶如, 周玲, 周超, 邓全利. 基于忆阻器的混沌、存储器及神经网络电路研究进展[J]. 电子与信息学报, 2020, 42(4): 795-810. doi: 10.11999/JEIT190821
引用本文: 王春华, 蔺海荣, 孙晶如, 周玲, 周超, 邓全利. 基于忆阻器的混沌、存储器及神经网络电路研究进展[J]. 电子与信息学报, 2020, 42(4): 795-810. doi: 10.11999/JEIT190821
Chunhua WANG, Hairong LIN, Jingru SUN, Ling ZHOU, Chao ZHOU, Quanli DENG. Research Progress on Chaos, Memory and Neural Network Circuits Based on Memristor[J]. Journal of Electronics and Information Technology, 2020, 42(4): 795-810. doi: 10.11999/JEIT190821
Citation: Chunhua WANG, Hairong LIN, Jingru SUN, Ling ZHOU, Chao ZHOU, Quanli DENG. Research Progress on Chaos, Memory and Neural Network Circuits Based on Memristor[J]. Journal of Electronics and Information Technology, 2020, 42(4): 795-810. doi: 10.11999/JEIT190821

基于忆阻器的混沌、存储器及神经网络电路研究进展

doi: 10.11999/JEIT190821
基金项目: 国家自然科学基金重大研究计划项目(91964108),国家自然科学基金(61971185),湖南省高校重点实验室开放基金(18K010)
详细信息
    作者简介:

    王春华:男,1963年生,教授,研究方向为模拟/混合集成电路设计、混沌电路与系统、神经网络与类脑智能、混沌图像加密

    蔺海荣:男,1988年生,博士生,研究方向为基于忆阻的神经网络模型设计、动力学分析以及电路实现

    孙晶如:女,1977年生,助理教授,研究方向为基于忆阻的存储器技术、混沌图像加密技术、基于神经网络的交通流预测

    周玲:女,1980年生,讲师,研究方向为混沌电路与系统、图像处理与加密

    周超:男,1991年生,博士生,研究方向为复杂网络、基于忆阻神经网络同步与控制

    邓全利:男,1993年生,硕士生,研究方向为基于忆阻器的混沌系统及基于忆阻器的神经网络

    通讯作者:

    王春华 wch1227164@hnu.edu.cn

  • 中图分类号: TN601; TN710.2

Research Progress on Chaos, Memory and Neural Network Circuits Based on Memristor

Funds: The Major Research Project of the National Natural Science Foundation of China (91964108), The National Natural Science Foundation of China (61971185), The Open Fund Project of Key Laboratory in Hunan Universities (18K010)
  • 摘要: 忆阻器是除电阻、电容、电感之外发现的第4种基本电子元件,它是一种具有记忆特性的非线性器件,可用于混沌、存储器、神经网络等电路与系统的实现。该文对基于忆阻器的混沌电路、存储器、神经网络电路的设计与神经动力学的国内外研究进行了综述,并给出了对它们的研究展望。
  • 图  1  HP忆阻器的结构图

    图  2  基于1T2M存储单元的多值存储器原理图

    图  3  基于忆阻器突触的电路结构图

    图  4  电磁辐射忆阻神经模型

    图  5  忆阻突触神经模型

  • [1] CHUA L O. Memristor-the missing circuit element[J]. IEEE Transactions on Circuit Theory, 1971, 18(5): 507–519. doi:  10.1109/tct.1971.1083337
    [2] STRUKOV D B, SNIDER G S, STEWART D R, et al. The missing memristor found[J]. Nature, 2008, 453(7191): 80–83. doi:  10.1038/nature06932
    [3] KIM H, SAH M P, YANG C J, et al. Memristor emulator for memristor circuit applications[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2012, 59(10): 2422–2431. doi:  10.1109/tcsi.2012.2188957
    [4] WANG Xiaobin, CHEN Yiran, XI Haiwen, et al. Spintronic memristor through spin-torque-induced magnetization motion[J]. IEEE Electron Device Letters, 2009, 30(3): 294–297. doi:  10.1109/LED.2008.2012270
    [5] HU Miao, LI Hai, CHEN Yiran, et al. Geometry variations analysis of TiO2 thin-film and spintronic memristors[C]. The 16th Asia and South Pacific Design Automation Conference, Yokohama, Japan, 2011: 25–30. doi: 10.1109/ASPDAC.2011.5722193.
    [6] VOURKAS I, and SIRAKOULIS G C. A novel design and modeling paradigm for memristor-based crossbar circuits[J]. IEEE Transactions on Nanotechnology, 2012, 11(6): 1151–1159. doi:  10.1109/TNANO.2012.2217153
    [7] KVATINSKY S, FRIEDMAN E G, KOLODNY A, et al. TEAM: Threshold adaptive memristor model[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, 60(1): 211–221. doi:  10.1109/TCSI.2012.2215714
    [8] KVATINSKY S, RAMADAN M, FRIEDMAN E G, et al. VTEAM: A general model for voltage-controlled memristors[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2015, 62(8): 786–790. doi:  10.1109/TCSⅡ.2015.2433536
    [9] ZHANG Yang, LI Yi, WANG Xiaoping, et al. Synaptic characteristics of Ag/AgInSbTe/Ta-based memristor for pattern recognition applications[J]. IEEE Transactions on Electron Devices, 2017, 64(4): 1806–1811. doi:  10.1109/TED.2017.2671433
    [10] SHERI A M, HWANG H, JEON M, et al. Neuromorphic character recognition system with two PCMO memristors as a synapse[J]. IEEE Transactions on Industrial Electronics, 2014, 61(6): 2933–2941. doi:  10.1109/tie.2013.2275966
    [11] CHOI S, SHERIDAN P, and LU W D. Data clustering using memristor networks[J]. Scientific Reports, 2015, 5: 10492. doi:  10.1038/srep10492
    [12] DOU Gang, YU Yang, GOU Mei, et al. Memristive behavior based on Ba-doped SrTiO3 films[J]. Chinese Physics Letters, 2017, 34(3): 038502. doi:  10.1088/0256-307X/34/3/038502
    [13] CORINTO F and ASCOLI A. Memristive diode bridge with LCR filter[J]. Electronics Letters, 2012, 48(14): 824–825. doi:  10.1049/el.2012.1480
    [14] SANCHEZ-LÓPEZ C, MENDOZA-LÓPEZ J, CARRASCO-AGUILAR M A, et al. A floating analog memristor emulator circuit[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2014, 61(5): 309–313. doi:  10.1109/TCSⅡ.2014.2312806
    [15] BABACAN Y and KAÇAR F. Floating memristor emulator with subthreshold region[J]. Analog Integrated Circuits and Signal Processing, 2017, 90(2): 471–475. doi:  10.1007/s10470-016-0888-9
    [16] ADHIKARI S P, SAH M P, KIM H, et al. Three fingerprints of memristor[J]. IEEE Transactions on Circuits and Systems-I, 2013, 60(11): 3008–3021. doi:  10.1109/TCSI.2013.2256171
    [17] CHUA L O. If it’s pinched it’s a memristor[J]. Semiconductor Science and Technology, 2014, 29(10): 1040001–1040042. doi:  10.1088/0268-1242/29/10/104001
    [18] BAO Bocheng, YU Jingjing, HU Fengwei, et al. Generalized memristor consisting of diode bridge with first order parallel RC filter[J]. International Journal of Bifurcation and Chaos, 2014, 24(11): 1450143. doi:  10.1142/S0218127414501430
    [19] YUAN Fang and LI Yuxia. A chaotic circuit constructed by a memristor, a memcapacitor and a meminductor[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2019, 29(10): 101101. doi:  10.1063/1.5125673
    [20] ITOH M and CHUA L O. Memristor oscillators[J]. International Journal of Bifurcation and Chaos, 2008, 18(11): 3183–3206. doi:  10.1142/S0218127408022354
    [21] FITCH A L, YU Dongsheng, IU H H C, et al. Hyperchaos in a memristor-based modified canonical chua's circuit[J]. International Journal of Bifurcation and Chaos, 2012, 22(6): 1250133. doi:  10.1142/S0218127412501337
    [22] BAO Han, JIANG Tao, CHU Kaibin, et al. Memristor-based canonical Chua’s circuit: Extreme multistability in voltage-current domain and its controllability in flux-charge domain[J]. Complexity, 2018, 2018: 5935637. doi:  10.1155/2018/5935637
    [23] AHAMED A I and LAKSHMANAN M. Nonsmooth bifurcations, transient hyperchaos and hyperchaotic beats in a memristive murali-lakshmanan-chua circuit[J]. International Journal of Bifurcation and Chaos, 2013, 23(6): 1350098. doi:  10.1142/S0218127413500983
    [24] ZHAO Qing, WANG Chunhua, and ZHANG Xin. A universal emulator for memristor, memcapacitor, and meminductor and its chaotic circuit[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2019, 29(1): 013141. doi:  10.1063/1.5081076
    [25] BUSCARINO A, FORTUNA L, FRASCA M, et al. A chaotic circuit based on Hewlett-Packard memristor[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2012, 22(2): 023136. doi:  10.1063/1.4729135
    [26] BAO Bocheng, JIANG Tao, WANG Guangyi, et al. Two-memristor-based Chua’s hyperchaotic circuit with plane equilibrium and its extreme multistability[J]. Nonlinear Dynamics, 2017, 89(2): 1157–1171. doi:  10.1007/s11071-017-3507-0
    [27] BAO Bocheng, JIANG Pan, WU Huagan, et al. Complex transient dynamics in periodically forced memristive Chua’s circuit[J]. Nonlinear Dynamics, 2015, 79(4): 2333–2343. doi:  10.1007/s11071-014-1815-1
    [28] 洪庆辉, 曾以成, 李志军. 含磁控和荷控两种忆阻器的混沌电路设计与仿真[J]. 物理学报, 2013, 62(23): 230502. doi:  10.7498/aps.62.230502

    HONG Qinghui, ZENG Yicheng, and LI Zhijun. Design and simulation of chaotic circuit for flux-controlled memristor and charge-controlled memristor[J]. Acta Physica Sinica, 2013, 62(23): 230502. doi:  10.7498/aps.62.230502
    [29] XU Quan, LIN Yi, BAO Bocheng, et al. Multiple attractors in a non-ideal active voltage- controlled memristor based Chua's circuit[J]. Chaos, Solitons & Fractals, 2016, 83: 186–200. doi:  10.1016/j.chaos.2015.12.007
    [30] CHEN Mo, LI Mengyuan, YU Qing, et al. Dynamics of self-excited attractors and hidden attractors in generalized memristor-based Chua’s circuit[J]. Nonlinear Dynamics, 2016, 81(1/2): 215–226. doi:  10.1007/s11071-015-1983-7
    [31] WANG Chunhua, LIU Xiaoming, and XIA Hu. Multi-piecewise quadratic nonlinearity memristor and its 2N-scroll and 2N+ 1-scroll chaotic attractors system[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2017, 27(3): 033114. doi:  10.1063/1.4979039
    [32] GUO Mei, YANG Wenyan, XUE Youbao, et al. Multistability in a physical memristor-based modified Chua’s circuit[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2019, 29(4): 043114. doi:  10.1063/1.5089293
    [33] LI Qingdu, ZENG Hongzheng, and LI Jing. Hyperchaos in a 4D memristive circuit with infinitely many stable equilibria[J]. Nonlinear Dynamics, 2015, 79(4): 2295–2308. doi:  10.1007/s11071-014-1812-4
    [34] MA Jian, CHEN Zengqiang, WANG Zhonglin, et al. A four-wing hyper-chaotic attractor generated from a 4-D memristive system with a line equilibrium[J]. Nonlinear Dynamics, 2015, 81(3): 1275–1288. doi:  10.1007/s11071-015-2067-4
    [35] ZHOU Ling, WANG Chunhua, and ZHOU Lili. Generating four-wing hyperchaotic attractor and two-wing, three-wing, and four-wing chaotic attractors in 4D memristive system[J]. International Journal of Bifurcation and Chaos, 2017, 27(2): 1750027. doi:  10.1142/S0218127417500274
    [36] ZHOU Ling, WANG Chunhua, and ZHOU Lili. A novel no-equilibrium hyperchaotic multi-wing system via introducing memristor[J]. International Journal of Circuit Theory and Applications, 2018, 46(1): 84–98. doi:  10.1002/cta.2339
    [37] WANG Chunhua, XIA Hu, and ZHOU Ling. A memristive hyperchaotic multiscroll jerk system with controllable scroll numbers[J]. International Journal of Bifurcation and Chaos, 2017, 27(6): 1750091. doi:  10.1142/S0218127417500912
    [38] BAO Han, WANG Ning, BAO Bocheng, et al. Initial condition-dependent dynamics and transient period in memristor-based hypogenetic jerk system with four line equilibria[J]. Communications in Nonlinear Science and Numerical Simulation, 2018, 57: 264–275. doi:  10.1016/j.cnsns.2017.10.001
    [39] 阮静雅, 孙克辉, 牟骏. 基于忆阻器反馈的Lorenz超混沌系统及其电路实现[J]. 物理学报, 2016, 65(19): 190502. doi:  10.7498/aps.65.190502

    RUAN Jingya, SUN Kehui, and MOU Jun. Memristor-based Lorenz hyper-chaotic system and its circuit implementation[J]. Acta Physica Sinica, 2016, 65(19): 190502. doi:  10.7498/aps.65.190502
    [40] ZHOU Ling, WANG Chunhua, and ZHOU Lili. Generating hyperchaotic multi-wing attractor in a 4D memristive circuit[J]. Nonlinear Dynamics, 2016, 85(4): 2653–2663. doi:  10.1007/s11071-016-2852-8
    [41] 俞清, 包伯成, 胡丰伟, 等. 基于一阶广义忆阻器的文氏桥混沌振荡器研究[J]. 物理学报, 2014, 63(24): 240505. doi:  10.7498/aps.63.240505

    YU Qing, BAO Bocheng, HU Fengwei, et al. Wien-bridge chaotic oscillator based on fisrt-order generalized memristor[J]. Acta Physica Sinica, 2014, 63(24): 240505. doi:  10.7498/aps.63.240505
    [42] WU Huagan, BAO Bocheng, LIU Zhong, et al. Chaotic and periodic bursting phenomena in a memristive Wien-bridge oscillator[J]. Nonlinear Dynamics, 2016, 83(1/2): 893–903. doi:  10.1007/s11071-015-2375-8
    [43] XU Birong, WANG Guangyi, WANG Xiaoyuan, et al. A third-order memristive Wien-bridge circuit and its integrable deformation[J]. Pramana, 2019, 93(42): 1–14. doi:  10.1007/s12043-019-1807-2
    [44] LI Zhijun and ZHENG Yicheng. A memristor oscillator based on a twin-T network[J]. Chinese Physics B, 2013, 22(4): 040502. doi:  10.1088/1674-1056/22/4/040502
    [45] ZHOU Ling, WANG Chunhua, ZHANG Xin, et al. Various attractors, coexisting attractors and antimonotonicity in a simple fourth-order memristive twin-t oscillator[J]. International Journal of Bifurcation and Chaos, 2018, 28(4): 1850050. doi:  10.1142/s0218127418500505
    [46] BAO Bocheng, JIANG Tao, XU Quan, et al. Coexisting infinitely many attractors in active band-pass filter-based memristive circuit[J]. Nonlinear Dynamics, 2016, 86(3): 1711–1723. doi:  10.1007/s11071-016-2988-6
    [47] BAO Bocheng, WANG Ning, XU Quan, et al. A simple third-order memristive band pass filter chaotic circuit[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2017, 64(8): 977–981. doi:  10.1109/TCSⅡ.2016.2641008
    [48] WANG Ning, ZHANG Guoshan, and BAO Han. Bursting oscillations and coexisting attractors in a simple memristor-capacitor-based chaotic circuit[J]. Nonlinear Dynamics, 2019, 97(2): 1477–1494. doi:  10.1007/s11071-019-05067-6
    [49] VARSHNEY V, SABARATHINAM S, PRASAD A, et al. Infinite number of hidden attractors in memristor-based autonomous duffing oscillator[J]. International Journal of Bifurcation and Chaos, 2018, 28(1): 1850013. doi:  10.1142/S021812741850013X
    [50] TENG Lin, IU H H C, WANG Xingyuan, et al. Chaotic behavior in fractional-order memristor-based simplest chaotic circuit using fourth degree polynomial[J]. Nonlinear Dynamics, 2014, 77(1/2): 231–241. doi:  10.1007/s11071-014-1286-4
    [51] CANG Shijian, WU Aiguo, WANG Zenghui, et al. Birth of one-to-four-wing chaotic attractors in a class of simplest three-dimensional continuous memristive systems[J]. Nonlinear Dynamics, 2016, 83(4): 1987–2001. doi:  10.1007/s11071-015-2460-z
    [52] WANG Chunhua, XIA Hu, and ZHOU Ling. Implementation of a new memristor-based multiscroll hyperchaotic system[J]. Pramana, 2017, 88(34): 1–7. doi:  10.1007/s12043-016-1342-3
    [53] HO Y, HUANG G M, and LI Peng. Nonvolatile memristor memory: Device characteristics and design implications[C]. 2009 IEEE/ACM International Conference on Computer-aided Design-digest of Technical Papers, San Jose, USA, 2009, 485–490. doi: 10.1145/1687399.1687491.
    [54] HO Y, HUANG G M, and LI Peng. Dynamical properties and design analysis for nonvolatile memristor memories[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2011, 58(4): 724–736. doi:  10.1109/TCSI.2010.2078710
    [55] KIM S, JEONG H Y, KIM S K, et al. Flexible memristive memory array on plastic substrates[J]. Nano Letters, 2011, 11(12): 5438–5442. doi:  10.1021/nl203206h
    [56] ZANGENEH M and JOSHI A. Design and optimization of nonvolatile multibit 1T1R resistive RAM[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2014, 22(8): 1815–1828. doi:  10.1109/TVLSI.2013.2277715
    [57] ZHANG Yang, SHEN Yi, WANG Xiaoping, et al. A novel design for memristor-based logic switch and crossbar circuits[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62(5): 1402–1411. doi:  10.1109/TCSI.2015.2407436
    [58] ZIDAN M A, FAHMY H A H, HUSSAIN M M, et al. Memristor-based memory: The sneak paths problem and solutions[J]. Microelectronics Journal, 2013, 44(2): 176–183. doi:  10.1016/j.mejo.2012.10.001
    [59] LEE M J, PARK Y, KANG B S, et al. 2-stack 1D-1R cross-point structure with oxide diodes as switch elements for high density resistance RAM applications[C]. 2007 IEEE International Electron Devices Meeting, Washington, USA, 2007: 771–774. doi: 10.1109/IEDM.2007.4419061.
    [60] MANEM H and ROSE G S. A read-monitored write circuit for 1T1M multi-level memristor memories[C]. 2011 IEEE International Symposium of Circuits and Systems, Rio de Janeiro, Brazil, 2011, 2938–2941. doi: 10.1109/ISCAS.2011.5938207.
    [61] HAMDIOUI S, AZIZA H, and SIRAKOULIS G C. Memristor based memories: Technology, design and test[C]. The 9th IEEE International Conference on Design & Technology of Integrated Systems in Nanoscale Era, Santorini, Greece, 2014: 1–7. doi: 10.1109/DTIS.2014.6850647.
    [62] SAKIB M N, HASSAN R, and BISWAS S. Design a memristor-based hybrid memory cell having faster bidirectional storage operation[C]. The 5th International Conference on Informatics, Electronics and Vision, Dhaka, Bangladesh, 2016. doi: 10.1109/ICIEV.2016.7760089.
    [63] RABBANI P, DEHGHANI R, and SHAHPARI N. A multilevel memristor-CMOS memory cell as a ReRAM[J]. Microelectronics Journal, 2015, 46(12): 1283–1290. doi:  10.1016/j.mejo.2015.10.006
    [64] SHEU S S, KUO C C, CHANG M F, et al. A ReRAM integrated 7T2R non-volatile SRAM for normally-off computing application[C]. 2013 IEEE Asian Solid-state Circuits Conference, Singapore, 2013: 245–248. doi: 10.1109/ASSCC.2013.6691028.
    [65] HO P W C, ALMURIB H A F, and KUMAR T N. Memristive SRAM cell of seven transistors and one memristor[J]. Journal of Semiconductors, 2016, 37(10): 104002. doi:  10.1088/1674-4926/37/10/104002
    [66] TEIMOORI M, AMIRSOLEIMANI A, AHMADI A, et al. A 2M1M Crossbar Architecture: Memory[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2018, 26(12): 2608–2618. doi:  10.1109/TVLSI.2018.2799951
    [67] MAAN A K, JAYADEVI D A, JAMES A P. A survey of memristive threshold logic circuits[J]. IEEE Transaactions on Neural Networks and Lerning System, 2016, 28(8): 1734–1746. doi:  10.1109/TNNLS.2016.2547842
    [68] EMARA A, GHONEIMA M, and EL-DESSOUKY M. Differential 1T2M memristor memory cell for single/multi-bit RRAM modules[C]. The 6th Computer Science and Electronic Engineering Conference, Colchester, UK, 2014: 69–72. doi: 10.1109/ceec.2014.6958557.
    [69] YILMAZ Y and MAZUMDER P. A drift-tolerant read/write scheme for multilevel memristor memory[J]. IEEE Transactions on Nanotechnology, 2017, 16(6): 1016–1027. doi:  10.1109/TNANO.2017.2741504
    [70] SAKIB M N, HASSAN R, BISWAS S N, et al. Memristor-based high-speed memory cell with stable successive read operation[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 37(5): 1037–1049. doi:  10.1109/TCAD.2017.2729464
    [71] WANG Xiaoping, LI Shuai, LIU Hui, et al. A compact scheme of reading and writing for memristor-based multivalued memory[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 37(7): 1505–1509. doi:  10.1109/TCAD.2017.2753199
    [72] EMARA A and GHONEIMA M. A reference-less multilevel memristor based RRAM module[C]. The 58th IEEE International Midwest Symposium on Circuits and Systems, Fort Collins, 2015: 1–4. doi: 10.1109/MWSCAS.2015.7282147.
    [73] SHAARAWY N, EMARA A, EL-NAGGAR A M, et al. Design and analysis of 2T2M hybrid CMOS-memristor based RRAM[J]. Microelectronics Journal, 2018, 73: 75–85. doi:  10.1016/j.mejo.2018.01.001
    [74] KIM H, SAH M P, YANG Changju, et al. Memristor bridge synapses[J]. Proceedings of the IEEE, 2012, 100(6): 2061–2070. doi:  10.1109/JPROC.2011.2166749
    [75] ADHIKARI S P, YANG Changju, KIM H, et al. Memristor bridge synapse-based neural network and its learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(9): 1426–1435. doi:  10.1109/tnnls.2012.2204770
    [76] ADHIKARI S P, KIM H, BUDHATHOKI R K, et al. A circuit-based learning architecture for multilayer neural networks with memristor bridge synapses[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62(1): 215–223. doi:  10.1109/TCSI.2014.2359717
    [77] 冯广, 段书凯, 王丽丹. 双极性脉冲忆阻桥电子突触神经网络及图像处理[J]. 中国科学: 信息科学, 2017, 47(3): 385–400. doi:  10.1360/N112016-00061

    FENG Guang, DUAN Shukai, and WANG Lidan. Neural networks based on doublet generator synapses and its applications in image processing[J]. Scientia Sinica Informationis, 2017, 47(3): 385–400. doi:  10.1360/N112016-00061
    [78] ALIBART F, ZAMANIDOOST E, and STRUKOV D B. Pattern classification by memristive crossbar circuits using ex situ and in situ training[J]. Nature Communications, 2013, 4(1): 1–7. doi:  10.1038/ncomms3072
    [79] YAKOPCIC C, HASAN R, TAHA T M, et al. Memristor-based neuron circuit and method for applying learning algorithm in SPICE[J]. Electronics Letters, 2014, 50(7): 492–494. doi:  10.1049/el.2014.0464
    [80] TRUONG S N and MIN K S. New memristor-based crossbar array architecture with 50-% area reduction and 48-% power saving for matrix-vector multiplication of analog neuromorphic computing[J]. Journal of Semiconductor Technology and Science, 2014, 14(3): 356–363. doi:  10.5573/jsts.2014.14.3.356
    [81] SOUDRY D, DI CASTRO D, GAL A, et al. Memristor-based multilayer neural networks with online gradient descent training[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(10): 2408–2421. doi:  10.1109/tnnls.2014.2383395
    [82] HASAN R, TAHA T M, and YAKOPCIC C. On-chip training of memristor crossbar based multi-layer neural networks[J]. Microelectronics Journal, 2017, 66: 31–40. doi:  10.1016/j.mejo.2017.05.005
    [83] ZHANG Yang, WANG Xiaoping, LI Yi, et al. Memristive model for synaptic circuits[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2017, 64(7): 767–771. doi:  10.1109/TCSⅡ.2016.2605069
    [84] WANG Chunhua, XIONG Lin, SUN Jingru, et al. Memristor-based neural networks with weight simultaneous perturbation training[J]. Nonlinear Dynamics, 2019, 95(4): 2893–2906. doi:  10.1007/s11071-018-4730-z
    [85] HODGKIN A L and HUXLEY A F. A quantitative description of membrane current and its application to conduction and excitation in nerve[J]. The Journal of physiology, 1952, 117(4): 500–544. doi:  10.1113/jphysiol.1952.sp004764
    [86] NAGUMO J, ARIMOTO S, and YOSHIZAWA S. An active pulse transmission line simulating nerve axon[J]. Proceedings of the IRE, 1962, 50(10): 2061–2070. doi:  10.1109/JRPROC.1962.288235
    [87] IZHIKEVICH E M. Simple model of spiking neurons[J]. IEEE Transactions on Neural Networks, 2003, 14(6): 1569–1572. doi:  10.1109/TNN.2003.820440
    [88] HINDMARSH J L and ROSE R M. A model of the nerve impulse using two first-order differential equations[J]. Nature, 1982, 296(5853): 162–164. doi:  10.1038/296162a0
    [89] HINDMARSH J L and ROSE R M. A model of neuronal bursting using three coupled first order differential equations[J]. Proceedings of the Royal Society B: Biological Sciences, 1984, 221(1222): 87–102. doi:  10.1098/rspb.1984.0024
    [90] KASLIK E. Analysis of two- and three-dimensional fractional-order Hindmarsh-Rose type neuronal models[J]. Fractional Calculus and Applied Analysis, 2017, 20(3): 623–645. doi:  10.1515/fca-2017-0033
    [91] LAKSHMANAN S, LIM C P, NAHAVANDI S, et al. Dynamical analysis of the Hindmarsh-Rose neuron with time delays[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(8): 1953–1958. doi:  10.1109/TNNLS.2016.2557845
    [92] THOTTIL S K and IGNATIUS R P. Nonlinear feedback coupling in Hindmarsh-Rose neurons[J]. Nonlinear Dynamics, 2017, 87(3): 1879–1899. doi:  10.1007/s11071-016-3160-z
    [93] CHUA L O and YANG L. Cellular neural networks: Theory[J]. IEEE Transactions on Circuits and Systems, 1988, 35(10): 1257–1272. doi:  10.1109/31.7600
    [94] HOPFIELD J J. Neurons with graded response have collective computational properties like those of two-state neurons[J]. Proceedings of the National Academy of Sciences of the United States of America, 1984, 81(10): 3088–3092. doi:  10.1073/pnas.81.10.3088
    [95] WU Kaijun, LUO Tianqi, LU Huaiwei, et al. Bifurcation study of neuron firing activity of the modified Hindmarsh-Rose model[J]. Neural Computing and Applications, 2016, 27(3): 739–747. doi:  10.1007/s00521-015-1892-1
    [96] MINEEJA K K and IGNATIUS R P. Spatiotemporal activities of a pulse-coupled biological neural network[J]. Nonlinear Dynamics, 2018, 92(4): 1881–1897. doi:  10.1007/s11071-018-4169-2
    [97] YAO Yuangen and MA Jun. Weak periodic signal detection by sine-Wiener-noise-induced resonance in the FitzHugh-Nagumo neuron[J]. Cognitive Neurodynamics, 2018, 12(3): 343–349. doi:  10.1007/s11571-018-9475-3
    [98] MA Jun, ZHANG Ge, HAYAT T, et al. Model electrical activity of neuron under electric field[J]. Nonlinear Dynamics, 2019, 95(2): 1585–1598. doi:  10.1007/s11071-018-4646-7
    [99] MA Jun and TANG Jun. A review for dynamics in neuron and neuronal network[J]. Nonlinear Dynamics, 2017, 89(3): 1569–1578. doi:  10.1007/s11071-017-3565-3
    [100] KUMAR S, STRACHAN J P, and WILLIAMS R S. Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing[J]. Nature, 2017, 548(7667): 318–321. doi:  10.1038/nature23307
    [101] WANG Zhongrui, JOSHI S, SAVEL’EV S E, et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing[J]. Nature Materials, 2017, 16(1): 101–108. doi:  10.1038/nmat4756
    [102] SERB A, BILL J, KHIAT A, et al. Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses[J]. Nature Communications, 2016, 7: 12611. doi:  10.1038/ncomms12611
    [103] PREZIOSO M, MERRIKH-BAYAT F, HOSKINS B D, et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors[J]. Nature, 2015, 521(7550): 61–64. doi:  10.1038/nature14441
    [104] RECH P C. Chaos and hyperchaos in a Hopfield neural network[J]. Neurocomputing, 2011, 74(17): 3361–3364. doi:  10.1016/j.neucom.2011.05.016
    [105] LIN Hairong, WANG Chunhua, and TAN Yumei. Hidden extreme multistability with hyperchaos and transient chaos in a Hopfield neural network affected by electromagnetic radiation[J]. Nonlinear Dynamics, 2019, 99: 2369–2386. doi:  org/10.1007/s11071-019-05408-5
    [106] ZHAO Liang, HONG Qinghui, and WANG Xiaoping. Novel designs of spiking neuron circuit and STDP learning circuit based on memristor[J]. Neurocomputing, 2018, 314: 207–214. doi:  10.1016/j.neucom.2018.06.062
    [107] LÜ Mi and MA Jun. Multiple modes of electrical activities in a new neuron model under electromagnetic radiation[J]. Neurocomputing, 2016, 205: 375–381. doi:  10.1016/j.neucom.2016.05.004
    [108] LI Jiajia, LIU Shaobao, LIU Weiming, et al. Suppression of firing activities in neuron and neurons of network induced by electromagnetic radiation[J]. Nonlinear Dynamics, 2016, 83(1/2): 801–810. doi:  10.1007/s11071-015-2368-7
    [109] XU Ying, YING Heping, JIA Ya, et al. Autaptic regulation of electrical activities in neuron under electromagnetic induction[J]. Scientific Reports, 2017, 7: 43452. doi:  10.1038/srep43452
    [110] WU Fuqiang, WANG Chunni, JIN Wuyin, et al. Dynamical responses in a new neuron model subjected to electromagnetic induction and phase noise[J]. Physica A: Statistical Mechanics and its Applications, 2017, 469: 81–88. doi:  10.1016/j.physa.2016.11.056
    [111] WU Juan, XU Yong, and MA Jun. Lévy noise improves the electrical activity in a neuron under electromagnetic radiation[J]. PLoS One, 2017, 12(3): e0174330. doi:  10.1371/journal.pone.0174330
    [112] LU Lulu, JIA Ya, LIU Wangheng, et al. Mixed stimulus-induced mode selection in neural activity driven by high and low frequency current under electromagnetic radiation[J]. Complexity, 2017, 2017: 7628537. doi:  10.1155/2017/7628537
    [113] MA Jun, LÜ Mi, ZHOU Ping, et al. Phase synchronization between two neurons induced by coupling of electromagnetic field[J]. Applied Mathematics and Computation, 2017, 307: 321–328. doi:  10.1016/j.amc.2017.03.002
    [114] REN Guodong, XU Ying, and WANG Chunni. Synchronization behavior of coupled neuron circuits composed of memristors[J]. Nonlinear Dynamics, 2017, 88(2): 893–901. doi:  10.1007/s11071-016-3283-2
    [115] MA Jun, WU Fuqiang, and WANG Chunni. Synchronization behaviors of coupled neurons under electromagnetic radiation[J]. International Journal of Modern Physics B, 2017, 31(2): 1650251. doi:  10.1142/S0217979216502519
    [116] GE Mengyan, JIA Ya, XU Ying, et al. Mode transition in electrical activities of neuron driven by high and low frequency stimulus in the presence of electromagnetic induction and radiation[J]. Nonlinear Dynamics, 2018, 91(1): 515–523. doi:  10.1007/s11071-017-3886-2
    [117] TAKEMBO C N, MVOGO A, FOUDA H P E, et al. Effect of electromagnetic radiation on the dynamics of spatiotemporal patterns in memristor-based neuronal network[J]. Nonlinear Dynamics, 2019, 95(2): 1067–1078. doi:  10.1007/s11071-018-4616-0
    [118] FENG Peihua, WU Ying, and ZHANG Jiazhong. A route to chaotic behavior of single neuron exposed to external electromagnetic radiation[J]. Frontiers in Computational Neuroscience, 2017, 11(94): 1–9. doi:  10.3389/fncom.2017.00094
    [119] HU Xiaoyu, LIU Chongxin, LIU Ling, et al. Chaotic dynamics in a neural network under electromagnetic radiation[J]. Nonlinear Dynamics, 2018, 91(3): 1541–1554. doi:  10.1007/s11071-017-3963-6
    [120] LIN Hairong and WANG Chunhua. Influences of electromagnetic radiation distribution on chaotic dynamics of a neural network[J]. Applied Mathematics and Computation, 2020, 369: 124840. doi:  10.1016/j.amc.2019.124840
    [121] BAO Bocheng, HU Aihuang, BAO Han, et al. Three-dimensional memristive Hindmarsh-Rose neuron model with hidden coexisting asymmetric behaviors[J]. Complexity, 2018, 2018: 3872573. doi:  10.1155/2018/3872573
    [122] BAO Han, LIU Wenbo, and HU Aihuang. Coexisting multiple firing patterns in two adjacent neurons coupled by memristive electromagnetic induction[J]. Nonlinear Dynamics, 2019, 95(1): 43–56. doi:  10.1007/s11071-018-4549-7
    [123] BAO Han, HU Aihuang, LIU Wenbo, et al. Hidden bursting firings and bifurcation mechanisms in memristive neuron model with threshold electromagnetic induction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(2): 502–511. doi:  10.1109/TNNLS.2019.2905137
    [124] ZHANG Jihong and LIAO Xiaofeng. Synchronization and chaos in coupled memristor-based FitzHugh-Nagumo circuits with memristor synapse[J]. AEU-International Journal of Electronics and Communications, 2017, 75: 82–90. doi:  10.1016/j.aeue.2017.03.003
    [125] XU Ying, JIA Ya, MA Jun, et al. Synchronization between neurons coupled by memristor[J]. Chaos, Solitons & Fractals, 2017, 104: 435–442. doi:  10.1016/j.chaos.2017.09.002
    [126] ZHANG Ge, WANG Chunni, ALZAHRANI F, et al. Investigation of dynamical behaviors of neurons driven by memristive synapse[J]. Chaos, Solitons & Fractals, 2018, 108: 15–27. doi:  10.1016/j.chaos.2018.01.017
    [127] BAO Han, LIU Wenbo, and CHEN Mo. Hidden extreme multistability and dimensionality reduction analysis for an improved non-autonomous memristive FitzHugh-Nagumo circuit[J]. Nonlinear Dynamics, 2019, 96(3): 1879–1894. doi:  10.1007/s11071-019-04890-1
    [128] CHEN Mo, QI Jianwei, XU Quan, et al. Quasi-period, periodic bursting and bifurcations in memristor-based Fitzhugh-Nagumo circuit[J]. AEU-International Journal of Electronics and Communications, 2019, 110: 152840. doi:  10.1016/j.aeue.2019.152840
    [129] LI Qingdu, TANG Song, ZENG Hongzheng, et al. On hyperchaos in a small memristive neural network[J]. Nonlinear Dynamics, 2014, 78(2): 1087–1099. doi:  10.1007/s11071-014-1498-7
    [130] PHAM V T, JAFARI S, VAIDYANATHAN S, et al. A novel memristive neural network with hidden attractors and its circuitry implementation[J]. Science China Technological Sciences, 2016, 59(3): 358–363. doi:  10.1007/s11431-015-5981-2
    [131] BAO Bocheng, QIAN Hui, XU Quan, et al. Coexisting behaviors of asymmetric attractors in hyperbolic-type memristor based Hopfield neural network[J]. Frontiers in Computational Neuroscience, 2017, 11(81): 1–14. doi:  10.3389/fncom.2017.00081
    [132] NJITACKE Z T, KENGNE J, and FOTSIN H B. A plethora of behaviors in a memristor based Hopfield neural networks (HNNs)[J]. International Journal of Dynamics and Control, 2019, 7(1): 36–52. doi:  10.1007/s40435-018-0435-x
    [133] XU Quan, SONG Zhe, BAO Han, et al. Two-neuron-based non-autonomous memristive Hopfield neural network: Numerical analyses and hardware experiments[J]. AEU-International Journal of Electronics and Communications, 2018, 96: 66–74. doi:  10.1016/j.aeue.2018.09.017
    [134] CHEN Chengjie, CHEN Jingqi, BAO Han, et al. Coexisting multi-stable patterns in memristor synapse-coupled Hopfield neural network with two neurons[J]. Nonlinear Dynamics, 2019, 95(4): 3385–3399. doi:  10.1007/s11071-019-04762-8
    [135] HU Jin, and WANG Jun. Global uniform asymptotic stability of memristor-based recurrent neural networks with time delays[C]. 2010 International Joint Conference on Neural Networks, Barcelona, Spain, 2010: 1–8. doi: 10.1109/IJCNN.2010.5596359.
    [136] WU Ailong and ZENG Zhigang. Exponential stabilization of memristive neural networks with time delays[J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(12): 1919–1929. doi:  10.1109/TNNLS.2012.2219554
    [137] WU Huaiqin, LI Ruoxia, WEI Hongzhi, et al. Synchronization of a class of memristive neural networks with time delays via sampled-data control[J]. International Journal of Machine Learning and Cybernetics, 2015, 6(3): 365–373. doi:  10.1007/s13042-014-0271-z
    [138] ZHANG Guodong, HU Junhao, and SHEN Yi. Exponential lag synchronization for delayed memristive recurrent neural networks[J]. Neurocomputing, 2015, 154: 86–93. doi:  10.1016/j.neucom.2014.12.016
    [139] DING Sanbo, WANG Zhanshan, NIU Haisha, et al. Stop and go adaptive strategy for synchronization of delayed memristive recurrent neural networks with unknown synaptic weights[J]. Journal of the Franklin Institute, 2017, 354(12): 4989–5010. doi:  10.1016/j.jfranklin.2017.05.011
    [140] WU Hongjuan, FENG Yuming, TU Zhengwen, et al. Exponential synchronization of memristive neural networks with time delays[J]. Neurocomputing, 2018, 297: 1–7. doi:  10.1016/j.neucom.2018.01.017
    [141] CAI Shuiming, LI Xiaojing, ZHOU Peipei, et al. Aperiodic intermittent pinning control for exponential synchronization of memristive neural networks with time-varying delays[J]. Neurocomputing, 2019, 332: 249–258. doi:  10.1016/j.neucom.2018.12.070
    [142] WANG Xin, SHE Kun, ZHONG Shouming, et al. Exponential synchronization of memristor-based neural networks with time-varying delay and stochastic perturbation[J]. Neurocomputing, 2017, 242: 131–139. doi:  10.1016/j.neucom.2017.02.059
    [143] LIU Dan, ZHU Song, and SUN Kaili. Global anti-synchronization of complex-valued memristive neural networks with time delays[J]. IEEE Transactions on Cybernetics, 2018, 49(5): 1735–1747. doi:  10.1109/TCYB.2018.2812708
    [144] ZHANG Weiwei, ZHANG Hai, CAO Jinde, et al. Synchronization in uncertain fractional-order memristive complex-valued neural networks with multiple time delays[J]. Neural Networks, 2019, 110: 186–198. doi:  10.1016/j.neunet.2018.12.004
    [145] YAO Wei, WANG Chunhua, CAO Jinde, et al. Hybrid multisynchronization of coupled multistable memristive neural networks with time delays[J]. Neurocomputing, 2019, 363: 281–294. doi:  10.1016/j.neucom.2019.07.014
    [146] TANG Yu. Terminal sliding mode control for rigid robots[J]. Automatica, 1998, 34(1): 51–56. doi:  10.1016/s0005-1098(97)00174-x
    [147] ABDURAHMAN A, JIANG Haijun, and TENG Zhidong. Finite-time synchronization for memristor-based neural networks with time-varying delays[J]. Neural Networks, 2015, 69: 20–28. doi:  10.1016/j.neunet.2015.04.015
    [148] ZHAO Hui, LI Lixiang, PENG Haipeng, et al. Finite-time robust synchronization of memrisive neural network with perturbation[J]. Neural Processing Letters, 2018, 47(2): 509–533. doi:  10.1007/s11063-017-9664-9
    [149] GUO Zhenyuan, GONG Shuqing, and HUANG Tingwen. Finite-time synchronization of inertial memristive neural networks with time delay via delay-dependent control[J]. Neurocomputing, 2018, 293: 100–107. doi:  10.1016/j.neucom.2018.03.004
    [150] HUANG Dasong, JIANG Minghui, and JIAN Jigui. Finite-time synchronization of inertial memristive neural networks with time-varying delays via sampled-date control[J]. Neurocomputing, 2017, 266: 527–539. doi:  10.1016/j.neucom.2017.05.075
    [151] YANG Xinsong. Can neural networks with arbitrary delays be finite-timely synchronized?[J]. Neurocomputing, 2014, 143: 275–281. doi:  10.1016/j.neucom.2014.05.064
    [152] VELMURUGAN G, RAKKIYAPPAN R, and CAO Jinde. Finite-time synchronization of fractional-order memristor-based neural networks with time delays[J]. Neural Networks, 2016, 73: 36–46. doi:  10.1016/j.neunet.2015.09.012
    [153] ZHENG Mingwen, LI Lixiang, PENG Haipeng, et al. Finite-time projective synchronization of memristor-based delay fractional-order neural networks[J]. Nonlinear Dynamics, 2017, 89(4): 2641–2655. doi:  10.1007/s11071-017-3613-z
    [154] ZHENG Mingwen, LI Lixiang, PENG Haipeng, et al. Finite-time stability and synchronization for memristor-based fractional-order Cohen-Grossberg neural network[J]. The European Physical Journal B, 2016, 89(9): 1–11. doi:  10.1140/epjb/e2016-70337-6
    [155] HUI Meng, LUO Ni, WU Qisheng, et al. New results of finite-time synchronization via piecewise control for memristive cohen-grossberg neural networks with time-varying delays[J]. IEEE Access, 2019, 7: 79173–79185. doi:  10.1109/access.2019.2922973
    [156] POLYAKOV A. Nonlinear feedback design for fixed-time stabilization of linear control systems[J]. IEEE Transactions on Automatic Control, 2011, 57(8): 2106–2110. doi:  10.1109/tac.2011.2179869
    [157] CAO Jinde and LI Ruoxia. Fixed-time synchronization of delayed memristor-based recurrent neural networks[J]. Science China Information Sciences, 2017, 60(3): 032201. doi:  10.1007/s11432-016-0555-2
    [158] WANG Shiqin, GUO Zhenyuan, WEN Shiping, et al. Finite/fixed-time synchronization of delayed memristive reaction-diffusion neural networks[J]. Neurocomputing, 2020, 375: 1–8. doi:  10.1016/j.neucom.2019.06.092
    [159] LI Ruoxia, CAO Jinde, ALSAEDI A, et al. Exponential and fixed-time synchronization of Cohen-Grossberg neural networks with time-varying delays and reaction-diffusion terms[J]. Applied Mathematics and Computation, 2017, 313: 37–51. doi:  10.1016/j.amc.2017.05.073
    [160] CHEN Chuan, LI Lixiang, PENG Haipeng, et al. Fixed-time projective synchronization of memristive neural networks with discrete delay[J]. Physica A: Statistical Mechanics and its Applications, 2019, 534: 122248. doi:  10.1016/j.physa.2019.122248
  • [1] 冯熳, 王梓楠.  基于奇异值分解与神经网络的干扰识别, 电子与信息学报. doi: 10.11999/JEIT190228
    [2] 付哲泉, 李尚生, 李相平, 但波, 王旭坤.  基于高效可扩展改进残差结构神经网络的舰船目标识别技术, 电子与信息学报. doi: 10.11999/JEIT190913
    [3] 咸鹤群, 张艺, 汪定, 李增鹏, 贺云龙.  CSNN:基于汉语拼音与神经网络的口令集安全评估方法, 电子与信息学报. doi: 10.11999/JEIT190856
    [4] 孙克辉, 秦川, 王会海.  分数阶忆阻退化Jerk系统的特性分析与DSP实现, 电子与信息学报. doi: 10.11999/JEIT190904
    [5] 肖成龙, 孙颖, 林邦姜, 汤璇, 王珊珊, 张敏, 谢宇芳, 戴玲凤, 骆佳彬.  基于神经网络与复合离散混沌系统的双重加密方法, 电子与信息学报. doi: 10.11999/JEIT190213
    [6] 王晓媛, 金晨曦, 周鹏飞.  忆阻数字逻辑电路设计, 电子与信息学报. doi: 10.11999/JEIT190864
    [7] 董哲康, 杜晨杰, 林辉品, 赖俊昇, 胡小方, 段书凯.  基于多通道忆阻脉冲耦合神经网络的多帧图像超分辨率重建算法, 电子与信息学报. doi: 10.11999/JEIT190868
    [8] 沈怡然, 李付鹏, 王光义.  荷控忆阻器记忆衰退的寄生效应, 电子与信息学报. doi: 10.11999/JEIT190865
    [9] 王梦蛟, 邓勇, 李志军, 曾以成.  基于双曲正切忆阻器的Duffing系统中簇发、共存分析及其DSP实现, 电子与信息学报. doi: 10.11999/JEIT190631
    [10] 王光义, 沈书航, 刘公致, 李付鹏.  基于忆阻器的乘法器电路设计, 电子与信息学报. doi: 10.11999/JEIT190811
    [11] 曾以成, 成德武, 谭其威.  简洁无电感忆阻混沌电路及其特性, 电子与信息学报. doi: 10.11999/JEIT190859
    [12] 徐志红, 方震, 陈贤祥, 覃力, 杜利东, 赵湛, 刘杰昕.  一种基于多参数融合的无袖带式连续血压测量方法的研究, 电子与信息学报. doi: 10.11999/JEIT170238
    [13] 李志军, 向林波, 肖文润.  一种通用的记忆器件模拟器及在串联谐振电路中的应用, 电子与信息学报. doi: 10.11999/JEIT161060
    [14] 高迎彬, 孔祥玉, 胡昌华, 张会会, 侯立安.  一种广义主成分提取算法及其收敛性分析, 电子与信息学报. doi: 10.11999/JEIT151433
    [15] 赵雄文, 郭春霞, 李景春.  基于高阶累积量和循环谱的信号调制方式混合识别算法, 电子与信息学报. doi: 10.11999/JEIT150747
    [16] 闵富红, 王珠林, 王恩荣, 曹弋.  新型忆阻器混沌电路及其在图像加密中的应用, 电子与信息学报. doi: 10.11999/JEIT160178
    [17] 高学星, 孙华刚, 侯保林.  使用不同置信级训练样本的神经网络学习方法, 电子与信息学报. doi: 10.3724/SP.J.1146.2013.01099
    [18] 李志军, 曾以成.  基于文氏振荡器的忆阻混沌电路, 电子与信息学报. doi: 10.3724/SP.J.1146.2013.00332
    [19] 何宝祥, 包伯成.  忆阻器网络等效分析电路及其特性研究, 电子与信息学报. doi: 10.3724/SP.J.1146.2011.00875
    [20] 刘强, 汪斌强, 刘海成.  基于可重构路由器装配的构件候选集生成方法研究, 电子与信息学报. doi: 10.3724/SP.J.1146.2009.01608
  • 加载中
  • 图(5)
    计量
    • 文章访问数:  2471
    • HTML全文浏览量:  583
    • PDF下载量:  161
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-10-25
    • 修回日期:  2020-01-10
    • 网络出版日期:  2020-01-21
    • 刊出日期:  2020-06-04

    目录

      /

      返回文章
      返回

      官方微信,欢迎关注