高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于变步长约瑟夫遍历和DNA动态编码的图像加密算法

牛莹 张勋才

牛莹, 张勋才. 基于变步长约瑟夫遍历和DNA动态编码的图像加密算法[J]. 电子与信息学报, 2020, 42(6): 1383-1391. doi: 10.11999/JEIT190849
引用本文: 牛莹, 张勋才. 基于变步长约瑟夫遍历和DNA动态编码的图像加密算法[J]. 电子与信息学报, 2020, 42(6): 1383-1391. doi: 10.11999/JEIT190849
Ying NIU, Xuncai ZHANG. Image Encryption Algorithm of Based on Variable Step Length Josephus Traversing and DNA Dynamic Coding[J]. Journal of Electronics and Information Technology, 2020, 42(6): 1383-1391. doi: 10.11999/JEIT190849
Citation: Ying NIU, Xuncai ZHANG. Image Encryption Algorithm of Based on Variable Step Length Josephus Traversing and DNA Dynamic Coding[J]. Journal of Electronics and Information Technology, 2020, 42(6): 1383-1391. doi: 10.11999/JEIT190849

基于变步长约瑟夫遍历和DNA动态编码的图像加密算法

doi: 10.11999/JEIT190849
基金项目: 国家自然科学基金(61602424, U1804262),河南省重点研发与推广专项(202102210177, 192102210134)
详细信息
    作者简介:

    牛莹:女,1982年生,副教授,研究方向为生物信息处理与信息安全

    张勋才:男,1981年生,副教授、研究方向为智能信息处理与优化控制

    通讯作者:

    张勋才 zhangxuncai@pku.edu.cn

  • 中图分类号: TP301; TN918.4

Image Encryption Algorithm of Based on Variable Step Length Josephus Traversing and DNA Dynamic Coding

Funds: The National Natural Science Foundation of China (61602424, U1804262), The Key Research and Development Program of Henan Province (202102210177, 192102210134)
  • 摘要: 数字图像传输和存储的安全问题已成为信息安全研究的热点。该文提出一种基于变步长约瑟夫遍历和DNA动态编码的图像加密方法。首先将混沌映射产生的随机序列作为约瑟夫遍历的变步长,改进约瑟夫遍历问题,并采用改进的约瑟夫遍历对图像像素位置进行置乱;其次,动态选择DNA编码规则,对图像像素进行DNA编码,并与给定的DNA序列进行碱基运算;DNA编码规则的动态选择,很好地解决了DNA编码规则少所带来的安全隐患,提高了算法的安全性。最后通过密文反馈和混沌系统迭代来进一步增强算法的混淆和扩散特性。实验和安全性分析结果表明,该算法不仅对密钥的敏感性强,而且能有效抵御统计性分析和穷举分析等攻击操作。
  • 图  1  约瑟夫置乱效果

    图  2  加密流程图

    图  3  原始图像和密文图像

    图  4  原始图像和密文图像的直方图统计

    图  5  被裁剪的密文图像和解密图像

    表  1  8种编码规则

    12345678
    00AACGCGTT
    01CGAATTCG
    10GCTTAAGC
    11TTGCGCAA
    下载: 导出CSV

    表  2  异或运算规则

    XORACGT
    AACGT
    CCATG
    GGTAC
    TTGCA
    下载: 导出CSV

    表  3  加法运算规则

    ADDACGT
    AACGT
    CCGTA
    GGTAC
    TTACG
    下载: 导出CSV

    表  4  减法运算规则

    SUBACGT
    AATGC
    CCATG
    GGCAT
    TTGCA
    下载: 导出CSV

    表  5  加密密钥敏感性(%)

    初始值NPCRUACI
    $ {x}'_{0} $+10–1099.595633.5652
    $ {y}'_{0} $+10–1099.610933.3368
    $ {z}'_{0} $+10–1099.626133.5378
    下载: 导出CSV

    表  6  密钥的解密敏感性分析(%)

    初始值NPCRUACI
    $ {x}'_{0} $+10–1099.604834.6094
    $ {y}'_{0} $+10–1099.595634.4388
    $ {x}'_{0} $+10–1099.552934.5867
    下载: 导出CSV

    表  7  原始图像发生微小改变时NPCR和UACI的值(%)

    图像NPCRUACI
    Lena99.537833.3080
    Cameraman99.620933.5080
    Brain99.537533.6244
    White99.628433.8780
    下载: 导出CSV

    表  8  直方图的χ2分布统计

    原始图像χ2分布密文图像χ2分布检测结果
    Lena39851.3281239.0847通过
    Cameraman161271.875212.0456通过
    Brain1044635.67258.3025通过
    下载: 导出CSV

    表  9  原始图像和密文图像各方向的相关系数

    图像相关系数
    原始图像密文图像
    水平
    方向
    垂直
    方向
    对角线
    方向
    水平
    方向
    垂直
    方向
    对角线
    方向
    Cameraman0.95400.90870.8813–0.00700.00830.0013
    Brain0.99650.99590.9942–0.00380.00510.0042
    下载: 导出CSV

    表  10  原始图像和密文图像的信息熵

    图像信息熵
    原始图像密文图像
    Lena6.87947.9873
    Cameraman6.90467.9976
    Brain5.03297.9970
    White07.9970
    下载: 导出CSV

    表  11  Cameraman图像遭受数据丢失攻击后解密图像的各项指标

    裁剪面积相关性NPCRUACI
    水平垂直对角线
    原图0.95010.92310.901100
    1/640.91450.86890.86491.75480.6277
    1/160.80750.77540.74426.62232.3429
    1/40.46670.45070.435225.70199.0683
    下载: 导出CSV

    表  12  常用加密算法的安全性能列举

    CameramanNPCR
    (%)
    UACI(%)信息熵相关系数
    水平垂直对角线
    文献[18]99.598633.45617.99710.0047–0.00660.0031
    文献[21]99.562031.1169
    文献[19]99.604733.50507.9963–0.00740.0069–0.0191
    本文方法99.627733.57157.9971–0.00700.00830.0013
    下载: 导出CSV
  • [1] BEHNIA S, AKHSHANI A, MAHMODI H, et al. A novel algorithm for image encryption based on mixture of chaotic maps[J]. Chaos, Solitons & Fractals, 2008, 35(2): 408–419. doi:  10.1016/j.chaos.2006.05.011
    [2] SHANNON C E. Communication theory of secrecy systems[J]. The Bell System Technical Journal, 1949, 28(4): 656–715. doi:  10.1002/j.1538-7305.1949.tb00928.x
    [3] ÖZKAYNAK F. Brief review on application of nonlinear dynamics in image encryption[J]. Nonlinear Dynamics, 2018, 92(2): 305–313. doi:  10.1007/s11071-018-4056-x
    [4] CHEN G R, MAO Y B, and CHUI C K. A symmetric image encryption scheme based on 3D chaotic cat maps[J]. Chaos, Solitons & Fractals, 2004, 21(3): 749–761. doi:  10.1016/j.chaos.2003.12.022
    [5] WANG Xinyuan, WANG Xiaojuan, ZHAO Jianfeng, et al. Chaotic encryption algorithm based on alternant of stream cipher and block cipher[J]. Nonlinear Dynamics, 2011, 63(4): 587–597. doi:  10.1007/s11071-010-9821-4
    [6] LEIER A, RICHTER C, BANZHAF W, et al. Cryptography with DNA binary strands[J]. Biosystems, 2000, 57(1): 13–22. doi:  10.1016/S0303-2647(00)00083-6
    [7] SHIMANOVSKY B, FENG J, and POTKONJAK M. Hiding Data in DNA[M]. PETITCOLAS F A P. Information Hiding. Berlin: Springer, 2008: 373–386. doi: 10.1007/3-540-36415-3_24.
    [8] BONEH D, DUNWORTH C, and LIPTON R J. Breaking DES Using a Molecular Computer[M]. LIPTON R J and BAUM E B. DNA Based Computers I. Providence: American Mathematical Society, 1996: 37–65.
    [9] GEHANI A, LABEAN T, and REIF J. DNA-based Cryptography[M]. JONOSKA N, PĂUN G, and ROZENBERG G. Aspects of Molecular Computing. Berlin: Springer, 2003: 233–249. doi: 10.1007/978-3-540-24635-0_12.
    [10] CLELLAND C T, RISCA V, BANCROFT C. Hiding messages in DNA microdots[J]. Nature, 1999, 399(6736): 533–534. doi:  10.1038/21092
    [11] LE GOFF G C, BLUM L J, and MARQUETTE C A. Shrinking Hydrogel-DNA spots generates 3D microdots arrays[J]. Macromolecular Bioscience, 2013, 13(2): 227–233. doi:  10.1002/mabi.201200370
    [12] WANG Yanfeng, HAN Qinqin, CUI Guangzhao, et al. Hiding messages based on DNA sequence and recombinant DNA technique[J]. IEEE Transactions on Nanotechnology, 2019, 18: 299–307. doi:  10.1109/TNANO.2019.2904842
    [13] ZHANG Yinan, WANG Fei, CHAO Jie, et al. DNA origami cryptography for secure communication[J]. Nature Communications, 2019, 10: 5469. doi:  10.1038/s41467-019-13517-3
    [14] NAMASUDRA S, DEVI D, KADRY S, et al. Towards DNA based data security in the cloud computing environment[J]. Computer Communications, 2020, 151: 539–547. doi:  10.1016/j.comcom.2019.12.041
    [15] ZHANG Xuncai, ZHOU Zheng, and NIU Ying. An image encryption method based on the feistel network and dynamic DNA encoding[J]. IEEE Photonics Journal, 2018: 3901014. doi:  10.1109/JPHOT.2018.2859257
    [16] WANG Xingyuan, ZHANG Yingqian, and ZHAO Yuanyuan. A novel image encryption scheme based on 2-D logistic map and DNA sequence operations[J]. Nonlinear Dynamics, 2015, 82(3): 1269–1280. doi:  10.1007/s11071-015-2234-7
    [17] CHAI Xiuli, CHEN Yiran, and BROYDE Lucie. A novel chaos-based image encryption algorithm using DNA sequence operations[J]. Optics and Lasers in Engineering, 2017, 88: 197–213. doi:  10.1016/j.optlaseng.2016.08.009
    [18] WANG Xingyuan, ZHU Xiaoqiang, and ZHANG Yingqian. An image encryption algorithm based on Josephus traversing and mixed chaotic map[J]. IEEE Access, 2018, 6: 23733–23746. doi:  10.1109/ACCESS.2018.2805847
    [19] 郭毅, 邵利平, 杨璐. 基于约瑟夫和Henon映射的比特位图像加密算法[J]. 计算机应用研究, 2015, 32(4): 1131–1137. doi:  10.3969/j.issn.1001-3695.2015.04.041

    GUO Yi, SHAO Liping, and YANG Lu. Bit-level image encryption algorithm based on Josephus and Henon chaotic map[J]. Application Research of Computers, 2015, 32(4): 1131–1137. doi:  10.3969/j.issn.1001-3695.2015.04.041
    [20] 梁静, 李红菊, 赵凤, 等. 一种构造GC常重量DNA码的方法[J]. 电子与信息学报, 2019, 41(10): 2423–2427. doi:  10.11999/JEIT190070

    LIANG Jing, LI Hongju, ZHAO Feng, et al. A method for constructing GC constant weight DNA codes[J]. Journal of Electronics &Information Technology, 2019, 41(10): 2423–2427. doi:  10.11999/JEIT190070
    [21] CHAI Zongqian, LIANG Shili, HU Guorong, et al. Periodic characteristics of the Josephus ring and its application in image scrambling[J]. EURASIP Journal on Wireless Communications and Networking, 2018, 2018(1): 162. doi:  10.1186/s13638-018-1167-5
  • [1] 李付鹏, 刘敬彪, 王光义, 王康泰.  基于混沌集的图像加密算法, 电子与信息学报. doi: 10.11999/JEIT190344
    [2] 王延峰, 张桢桢, 王盼如, 孙军伟.  基于DNA链置换的两位格雷码减法器分子电路设计, 电子与信息学报. doi: 10.11999/JEIT190880
    [3] 孙军伟, 李智, 王延峰.  基于DNA链置换的三级联组合分子逻辑电路设计, 电子与信息学报. doi: 10.11999/JEIT190847
    [4] 戴紫彬, 马超, 李伟, 南龙梅.  面向密码算法的大位宽比特置换操作高速实现方案, 电子与信息学报. doi: 10.11999/JEIT161285
    [5] 闵富红, 王珠林, 王恩荣, 曹弋.  新型忆阻器混沌电路及其在图像加密中的应用, 电子与信息学报. doi: 10.11999/JEIT160178
    [6] 张顺, 高铁杠.  基于类DNA编码分组与替换的加密方案, 电子与信息学报. doi: 10.11999/JEIT140091
    [7] 肖迪, 邓秘密, 张玉书.  基于压缩感知的鲁棒可分离的密文域水印算法, 电子与信息学报. doi: 10.11999/JEIT141017
    [8] 刘泉, 李佩玥, 章明朝, 隋永新, 杨怀江.  基于可Markov分割混沌系统的图像加密算法, 电子与信息学报. doi: 10.3724/SP.J.1146.2013.01246
    [9] 朱从旭, 胡玉平, 孙克辉.  基于超混沌系统和密文交错扩散的图像加密新算法, 电子与信息学报. doi: 10.3724/SP.J.1146.2011.01004
    [10] 周庆, 胡月, 廖晓峰.  分组排列模式下图像加密算法的扩散性能分析与实现, 电子与信息学报. doi: 10.3724/SP.J.1146.2009.01071
    [11] 郑浩然, 张海模, 崔霆, 杜晓强.  一种新的正形置换构造方法, 电子与信息学报. doi: 10.3724/SP.J.1146.2008.00528
    [12] 陈帅, 钟先信, 石军锋, 朱士永.  基于离散数字混沌序列的图像加密, 电子与信息学报. doi: 10.3724/SP.J.1146.2005.01054
    [13] 余昭平, 王晓东.  基于循环移位置换的超伪随机置换的构造, 电子与信息学报.
    [14] 张申如, 郭明.  随机置换表中闭合状态演化环的特征及其在分组加密中的应用, 电子与信息学报.
    [15] 郑浩然, 金晨辉, 张海模.  相关免疫置换的构造和计数, 电子与信息学报.
    [16] 吕述望, 刘传东, 范修斌.  最大距离置换的计数公式, 电子与信息学报.
    [17] 亢保元.  密码体制中的正形置换的构造与记数, 电子与信息学报.
    [18] 费如纯, 王丽娜, 董晓梅, 于戈.  全距特征排列及全距置换, 电子与信息学报.
    [19] 宋焕生, 吴成柯, 刘春阳, 梁德群.  自偶置换滤波器, 电子与信息学报.
    [20] 朱华飞, 肖国镇, 王新梅.  基于强单向置换杂凑算法的构造和安全性分析, 电子与信息学报.
  • 加载中
  • 图(5) / 表ll (12)
    计量
    • 文章访问数:  1497
    • HTML全文浏览量:  296
    • PDF下载量:  55
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-10-31
    • 修回日期:  2020-05-03
    • 网络出版日期:  2020-05-19
    • 刊出日期:  2020-06-22

    目录

      /

      返回文章
      返回

      官方微信,欢迎关注