高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自适应背景选择和多检测区域的相关滤波算法

蒲磊 冯新喜 侯志强 余旺盛

蒲磊, 冯新喜, 侯志强, 余旺盛. 基于自适应背景选择和多检测区域的相关滤波算法[J]. 电子与信息学报, 2020, 42(12): 3061-3067. doi: 10.11999/JEIT190931
引用本文: 蒲磊, 冯新喜, 侯志强, 余旺盛. 基于自适应背景选择和多检测区域的相关滤波算法[J]. 电子与信息学报, 2020, 42(12): 3061-3067. doi: 10.11999/JEIT190931
Lei PU, Xinxi FENG, Zhiqiang HOU, Wangsheng YU. Correlation Filter Algorithm Based on Adaptive Context Selection and Multiple Detection Areas[J]. Journal of Electronics and Information Technology, 2020, 42(12): 3061-3067. doi: 10.11999/JEIT190931
Citation: Lei PU, Xinxi FENG, Zhiqiang HOU, Wangsheng YU. Correlation Filter Algorithm Based on Adaptive Context Selection and Multiple Detection Areas[J]. Journal of Electronics and Information Technology, 2020, 42(12): 3061-3067. doi: 10.11999/JEIT190931

基于自适应背景选择和多检测区域的相关滤波算法

doi: 10.11999/JEIT190931
基金项目: 国家自然科学基金(61571458, 61703423)
详细信息
    作者简介:

    蒲磊:男,1991年生,博士生,研究方向为计算机视觉、目标跟踪

    冯新喜:男,1964年生,教授,研究方向为信息融合、模式识别

    侯志强:男,1973年生,教授,研究方向为图像处理、计算机视觉

    余旺盛:男,1985年生,讲师,研究方向为图像处理、模式识别

    通讯作者:

    蒲磊 warmstoner@163.com

  • 中图分类号: TN911.73; TP391.4

Correlation Filter Algorithm Based on Adaptive Context Selection and Multiple Detection Areas

Funds: The National Natural Science Foundation of China (61571458, 61703423)
  • 摘要: 为了进一步提高相关滤波算法的判别力和对快速运动、遮挡等复杂场景的应对能力,该文提出一种基于自适应背景选择和多检测区域的跟踪框架。首先对检测后的响应图进行峰值分析,当响应为单峰的时候,提取目标上下左右的4块区域作为负样本对模型进行训练,当响应为多峰的时候,采用峰值提取技术和阈值选择方法提取较大几个峰值区域作为负样本。为了进一步提高算法对遮挡的应对能力,该文提出了一种多检测区域的搜索策略。将该框架和传统的相关滤波算法进行结合,实验结果表明,相对于基准算法,该算法在精度上提高了6.9%,在成功率上提高了6.3%。
  • 图  1  基于响应图峰值提取的自适应背景选择策略

    图  2  多检测区域搜索策略

    图  3  OTB100测试结果的精度曲线和成功率曲线

    图  4  定性分析

    表  1  基于自适应背景选择和多检测区域的相关滤波算法

     输入:图像序列I1, I2, ···, In,目标初始位置p0=(x0, y0)。
     输出:每帧图像的跟踪结果pt=(xt, yt)。
     对于t=1, 2, ···, n, do
      (1) 定位目标中心位置
      (a) 利用前一帧目标位置pt-1确定第t帧ROI区域,并提取
        HOG特征;
      (b) 利用式(3)在多个检测区域进行计算,获得多个响应图;
      (c) 提取多个响应图的最大值作为目标的中心位置pt
      (2) 模型更新
      (a) 对得到的响应图计算峰值个数;
      (b) 当为单峰时,提取上下左右4个背景块进行模型更新;
      (c) 当为多峰时,选取峰值位置的背景块作为负样本,对模型
        进行训练;
      (d) 采用式(7)对模型进行更新。
     结束
    下载: 导出CSV

    表  2  算法跟踪速度对比

    本文算法DCF_CADCFDSSTTLDMOSSE_CA
    成功率0.5860.5660.5230.5520.4480.488
    跟踪精度0.8080.7760.7390.7310.6330.642
    跟踪速度(FPS)53.582.3333.028.333.4115.0
    下载: 导出CSV
  • [1] SMEULDERS A W M, CHU D M, CUCCHIARA R, et al. Visual tracking: An experimental survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(7): 1442–1468. doi:  10.1109/TPAMI.2013.230
    [2] HE Anfeng, LUO Chong, TIAN Xinmei, et al. A twofold Siamese network for real-time object tracking[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4834–4843. doi: 10.1109/CVPR.2018.00508.
    [3] LI Bo, YAN Junjie, WU Wei, et al. . High performance visual tracking with Siamese region proposal network[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 8971–8980. doi: 10.1109/CVPR.2018.00935.
    [4] LI Peixia, CHEN Boyu, OUYANG Wanli, et al. GradNet: Gradient-guided network for visual object tracking[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 2019: 6162–6171. doi: 10.1109/ICCV.2019.00626.
    [5] BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters[C]. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 2544–2550. doi: 10.1109/CVPR.2010.5539960.
    [6] HENRIQUES J F, CASEIRO R, MARTINS P, et al. Exploiting the circulant structure of tracking-by-detection with kernels[C]. 12th European Conference on Computer Vision on Computer Vision, Florence, Italy, 2012: 702–715. doi: 10.1007/978-3-642-33765-9_50.
    [7] HENRIQUES J F, CASEIRO R, MARTINS P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583–596. doi:  10.1109/tpami.2014.2345390
    [8] DANELLJAN M, KHAN F S, FELSBERG M, et al. Adaptive color attributes for real-time visual tracking[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 1090–1097. doi: 10.1109/CVPR.2014.143.
    [9] DANELLJAN M, HÄGER G, KHAN F S, et al. Convolutional features for correlation filter based visual tracking[C]. 2015 IEEE International Conference on Computer Vision Workshop, Santiago, Chile, 2015: 58–66. doi: 10.1109/ICCVW.2015.84.
    [10] QI Yuankai, ZHANG Shengping, QIN Lei, et al. Hedged deep tracking[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 4303–4311. doi: 10.1109/CVPR.2016.466.
    [11] MA Chao, HUANG Jiabin, YANG Xiaokang, et al. Hierarchical convolutional features for visual tracking[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 3074–3082. doi: 10.1109/ICCV.2015.352.
    [12] WANG Haijun, ZHANG Shengyan, GE Hongjuan, et al. Robust visual tracking via semiadaptive weighted convolutional features[J]. IEEE Signal Processing Letters, 2018, 25(5): 670–674. doi:  10.1109/LSP.2018.2819622
    [13] QI Yuankai, ZHANG Shengping, QIN Lei, et al. Hedging deep features for visual tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(5): 1116–1130. doi:  10.1109/TPAMI.2018.2828817
    [14] ZHANG Tianzhu, XU Changsheng, and YANG M H. Learning multi-task correlation particle filters for visual tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(2): 365–378. doi:  10.1109/TPAMI.2018.2797062
    [15] DANELLJAN M, HÄGER G, KHAN F S, et al. Learning spatially regularized correlation filters for visual tracking[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 4310–4318. doi: 10.1109/ICCV.2015.490.
    [16] 蒲磊, 冯新喜, 侯志强, 等. 基于空间可靠性约束的鲁棒视觉跟踪算法[J]. 电子与信息学报, 2019, 41(7): 1650–1657. doi:  10.11999/JEIT180780

    PU Lei, FENG Xinxi, HOU Zhiqiang, et al. Robust visual tracking based on spatial reliability constraint[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1650–1657. doi:  10.11999/JEIT180780
    [17] GALOOGAHI H K, SIM T, LUCEY S. Correlation filters with limited boundaries[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 4630–4638. doi: 10.1109/CVPR.2015.7299094.
    [18] PU Lei, FENG Xinxi, and HOU Zhiqiang. Learning temporal regularized correlation filter tracker with spatial reliable constraint[J]. IEEE Access, 2019, 7: 81441–81450. doi:  10.1109/ACCESS.2019.2922416
    [19] LI Feng, TIAN Cheng, ZUO Wangmeng, et al. Learning spatial-temporal regularized correlation filters for visual tracking[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4904–4913. doi: 10.1109/CVPR.2018.00515.
    [20] 侯志强, 王帅, 廖秀峰, 等. 基于样本质量估计的空间正则化自适应相关滤波视觉跟踪[J]. 电子与信息学报, 2019, 41(8): 1983–1991. doi:  10.11999/JEIT180921

    HOU Zhiqiang, WANG Shuai, LIAO Xiufeng, et al. Adaptive regularized correlation filters for visual tracking based on sample quality estimation[J]. Journal of Electronics &Information Technology, 2019, 41(8): 1983–1991. doi:  10.11999/JEIT180921
    [21] MUELLER M, SMITH N, GHANEM B, et al. Context-aware correlation filter tracking[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 1396–1404. doi: 10.1109/CVPR.2017.152.
    [22] WANG Mengmeng, LIU Yong, HUANG Zeyi, et al. Large margin object tracking with circulant feature maps[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 4021–4029. doi: 10.1109/CVPR.2017.510.
    [23] WU Yi, LIM J, and YANG M H. Object tracking benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1834–1848. doi:  10.1109/TPAMI.2014.2388226
    [24] DANELLJAN M, HÄGER G, KHAN F S, et al. Accurate scale estimation for robust visual tracking[C]. British Machine Vision Conference 2014, Nottingham, UK, 2014: 65.1–65.11. doi: 10.5244/C.28.65.
    [25] HARE S, GOLODETZ S, SAFFARI A, et al. Struck: Structured output tracking with kernels[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(10): 2096–2109. doi:  10.1109/TPAMI.2015.2509974
    [26] KALAL Z, MIKOLAJCZYK K, and MATAS J. Tracking-learning-detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7): 1409–1422. doi:  10.1109/TPAMI.2011.239
    [27] ZHANG Tianzhu, GHANEM B, LIU Si, et al. Robust visual tracking via multi-task sparse learning[C]. 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 2042–2049. doi: 10.1109/CVPR.2012.6247908.
    [28] BABENKO B, YANG M H, and BELONGIE S. Visual tracking with online multiple instance learning[C]. 2019 IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009: 983–990. doi: 10.1109/CVPR.2009.5206737.
  • [1] 王鹏, 孙梦宇, 王海燕, 李晓艳, 吕志刚.  一种目标响应自适应的通道可靠性跟踪算法, 电子与信息学报. doi: 10.11999/JEIT190569
    [2] 张园强, 查宇飞, 库涛, 吴敏, 毕笃彦.  基于多实例回归模型的视觉跟踪算法研究, 电子与信息学报. doi: 10.11999/JEIT170717
    [3] 黄立勤, 朱飘.  车载视频下改进的核相关滤波跟踪算法, 电子与信息学报. doi: 10.11999/JEIT171109
    [4] 薛模根, 刘文琢, 袁广林, 秦晓燕.  基于编码迁移的快速鲁棒视觉跟踪, 电子与信息学报. doi: 10.11999/JEIT160966
    [5] 侯志强, 王鑫, 余旺盛, 戴铂, 金泽芬芬.  基于自适应深度稀疏网络的在线跟踪算法, 电子与信息学报. doi: 10.11999/JEIT160762
    [6] 陈诚, 李洪涛, 朱晓华, 胡恒, 曾文浩.  干扰背景下MIMO雷达部分相关信号设计, 电子与信息学报. doi: 10.11999/JEIT150637
    [7] 郑超, 陈杰, 殷松峰, 杨星, 冯云松, 凌永顺.  改进的协同训练框架下压缩跟踪, 电子与信息学报. doi: 10.11999/JEIT151001
    [8] 王暐, 王春平, 付强, 徐艳.  实时超像素跟踪算法, 电子与信息学报. doi: 10.11999/JEIT150705
    [9] 李寰宇, 毕笃彦, 查宇飞, 杨源.  一种易于初始化的类卷积神经网络视觉跟踪算法, 电子与信息学报. doi: 10.11999/JEIT150600
    [10] 侯志强, 戴铂, 胡丹, 余旺盛, 陈晨, 范舜奕.  基于感知深度神经网络的视觉跟踪, 电子与信息学报. doi: 10.11999/JEIT151449
    [11] 袁广林, 薛模根.  基于稀疏稠密结构表示与在线鲁棒字典学习的视觉跟踪, 电子与信息学报. doi: 10.11999/JEIT140507
    [12] 侯志强, 黄安奇, 余旺盛, 刘翔.  基于局部分块和模型更新的视觉跟踪算法, 电子与信息学报. doi: 10.11999/JEIT141134
    [13] 侯志强, 张浪, 余旺盛, 许婉君.  基于快速傅里叶变换的局部分块视觉跟踪算法, 电子与信息学报. doi: 10.11999/JEIT150183
    [14] 蔡自兴, 彭梦, 余伶俐.  基于时序特性的自适应增量主成分分析的视觉跟踪, 电子与信息学报. doi: 10.11999/JEIT141646
    [15] 薛模根, 朱虹, 袁广林.  基于在线判别式字典学习的鲁棒视觉跟踪, 电子与信息学报. doi: 10.11999/JEIT141325
    [16] 李寰宇, 毕笃彦, 杨源, 查宇飞, 覃兵, 张立朝.  基于深度特征表达与学习的视觉跟踪算法研究, 电子与信息学报. doi: 10.11999/JEIT150031
    [17] 张世辉, 韩德伟, 何欢.  利用视觉目标遮挡和轮廓信息确定下一最佳观测方位, 电子与信息学报. doi: 10.11999/JEIT150190
    [18] 姜维, 卢朝阳, 李静, 刘晓佩, 姚超.  基于视觉显著性和提升框架的场景文字背景抑制方法, 电子与信息学报. doi: 10.3724/SP.J.1146.2013.00974
    [19] 袁广林, 薛模根.  L2范数正则化鲁棒编码视觉跟踪, 电子与信息学报. doi: 10.3724/SP.J.1146.2013.01416
    [20] 李开明, 张群, 梁必帅, 罗迎, 杨小优.  卡车目标遮挡效应建模及微多普勒特征分析, 电子与信息学报. doi: 10.3724/SP.J.1146.2012.01609
  • 加载中
  • 图(4) / 表(2)
    计量
    • 文章访问数:  757
    • HTML全文浏览量:  319
    • PDF下载量:  81
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-11-20
    • 修回日期:  2020-05-26
    • 网络出版日期:  2020-06-01
    • 刊出日期:  2020-12-08

    目录

      /

      返回文章
      返回

      官方微信,欢迎关注