[1]
|
LUI P L. Passive intermodulation interference in communication systems[J]. Electronics & Communication Engineering Journal, 1990, 2(3): 109–118. |
[2]
|
张世全, 傅德民, 葛德彪. 无源互调干扰对通信系统抗噪性能的影响[J]. 电波科学学报, 2002, 17(2): 138–142. doi: 10.3969/j.issn.1005-0388.2002.02.009
ZHANG Shiquan, FU Demin, and GE Debiao. The effects of passive intermodulation interference on the anti-noise property of communications systems[J]. Chinese Journal of Radio Science, 2002, 17(2): 138–142. doi: 10.3969/j.issn.1005-0388.2002.02.009 |
[3]
|
BOYHAN J W, HENZING H F, and KODURU C. Satellite passive intermodulation: Systems considerations[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(3): 1058–1064. doi: 10.1109/7.532264 |
[4]
|
ZHAO Xiaolong, HE Yongning, YE Ming, et al. Analytic passive intermodulation model for flange connection based on metallic contact nonlinearity approximation[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(7): 2279–2287. doi: 10.1109/TMTT.2017.2668402 |
[5]
|
VICENTE C and HARTNAGEL H L. Passive-intermodulation analysis between rough rectangular waveguide flanges[J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(8): 2515–2525. doi: 10.1109/TMTT.2005.852771 |
[6]
|
CHEN Xiong, HE Yongning, YANG Sen, et al. Analytic passive intermodulation behavior on the coaxial connector using monte carlo approximation[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 60(5): 1207–1214. doi: 10.1109/TEMC.2018.2809449 |
[7]
|
ZHANG Kai, LI Tuanjie, and JIANG Jie. Passive intermodulation of contact nonlinearity on microwave connectors[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 60(2): 513–519. doi: 10.1109/TEMC.2017.2725278 |
[8]
|
张世全, 葛德彪. 通信系统无源非线性引起的互调干扰[J]. 陕西师范大学学报: 自然科学版, 2004, 32(1): 58–62. doi: 10.3321/j.issn:1672-4291.2004.01.016
ZHANG Shiquan and GE Debiao. Intermodulation interference due to passive nonlinearity in communication systems[J]. Journal of Shaanxi Normal University:Natural Science Edition, 2004, 32(1): 58–62. doi: 10.3321/j.issn:1672-4291.2004.01.016 |
[9]
|
王海宁, 梁建刚, 王积勤, 等. 高功率微波条件下的无源互调问题综述[J]. 微波学报, 2005, 21(S1): 1–6. doi: 10.3969/j.issn.1005-6122.2005.z1.001
WANG Haining, LIANG Jiangang, WANG Jiqin, et al. Review of passive intermodulation in HPM condition[J]. Journal of Microwaves, 2005, 21(S1): 1–6. doi: 10.3969/j.issn.1005-6122.2005.z1.001 |
[10]
|
田露. 星上无源互调干扰数字抑制技术研究[D]. [博士论文], 北京理工大学, 2017.
TIAN Lu. Digital suppression technique of passive intermodulation interference for satellite systems[D]. [Ph. D. dissertation], Beijing Institute of Technology, 2017. |
[11]
|
李玲玲, 马东娟, 李志刚. 触点动态接触电阻时间序列混沌预测[J]. 电工技术学报, 2014, 29(9): 187–193. doi: 10.3969/j.issn.1000-6753.2014.09.027
LI Lingling, MA Dongjuan, and LI Zhigang. Chaotic predication of dynamic contact resistance times series on contacts[J]. Transactions of China Electrotechnical Society, 2014, 29(9): 187–193. doi: 10.3969/j.issn.1000-6753.2014.09.027 |
[12]
|
曾以成, 成德武, 谭其威. 简洁无电感忆阻混沌电路及其特性[J]. 电子与信息学报, 2020, 42(4): 862–869. doi: 10.11999/JEIT190859
ZENG Yicheng, CHENG Dewu, and TAN Qiwei. A simple inductor-free memristive chaotic circuit and its characteristics[J]. Journal of Electronics &Information Technology, 2020, 42(4): 862–869. doi: 10.11999/JEIT190859 |
[13]
|
眭萍, 郭英, 李红光, 等. 基于混沌吸引子重构和Low-rank聚类的跳频信号电台分选[J]. 电子与信息学报, 2019, 41(12): 2965–2971. doi: 10.11999/JEIT180947
SUI Ping, GUO Ying, LI Hongguang, et al. Frequency-hopping transmitter classification based on chaotic attractor reconstruction and low-rank clustering[J]. Journal of Electronics &Information Technology, 2019, 41(12): 2965–2971. doi: 10.11999/JEIT180947 |
[14]
|
MAZZINI G, SETTI G, and ROVATTI R. Chaotic complex spreading sequences for asynchronous DS-CDMA. I. System modeling and results[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 1997, 44(10): 937–947. doi: 10.1109/81.633883 |
[15]
|
SCHIMMING T and HASLER M. Chaos communication in the presence of channel noise[J]. Journal of Signal Process, 2000, 4(1): 21–28. |
[16]
|
ROSENSTEIN M T, COLLINS J J, and DE LUCA C J. A practical method for calculating largest Lyapunov exponents from small data sets[J]. Physica D, 1993, 65(1/2): 117–134. doi: 10.1016/0167-2789(93)90009-P |
[17]
|
WOLF A, SWIFT J B, SWINNEY H L, et al. Determining Lyapunov exponents from a time series[J]. Physica D: Nonlinear Phenomena, 1985, 16(3): 285–317. doi: 10.1016/0167-2789(85)90011-9 |
[18]
|
SATO S, SANO M, and SAWADA Y. Practical methods of measuring the generalized dimension and the largest Lyapunov exponent in high dimensional chaotic systems[J]. Progress of Theoretical Physics, 1987, 77(1): 1–5. doi: 10.1143/ptp.77.1 |
[19]
|
ZHANG Jun, LAM K C, YAN W J, et al. Time series prediction using Lyapunov exponents in embedding phase space[J]. Computers & Electrical Engineering, 2004, 30(1): 1–15. doi: 10.1016/S0045-7906(03)00015-6 |
[20]
|
CAO Liangyue. Practical method for determining the minimum embedding dimension of a scalar time series[J]. Physica D: Nonlinear Phenomena, 1997, 110(1/2): 43–50. doi: 10.1016/S0167-2789(97)00118-8 |
[21]
|
KIM H S, EYKHOLT R, and SALAS J D. Nonlinear dynamics, delay times, and embedding windows[J]. Physica D: Nonlinear Phenomena, 1999, 127(1/2): 48–60. doi: 10.1016/S0167-2789(98)00240-1 |
[22]
|
龚祝平. 混沌时间序列的平均周期计算方法[J]. 系统工程, 2010, 28(12): 111–113.
GONG Zhuping. The calculating method of the average period of chaotic time series[J]. Systems Engineering, 2010, 28(12): 111–113. |
[23]
|
张春涛, 刘学飞, 向瑞银, 等. 基于最大互信息的混沌时间序列多步预测[J]. 控制与决策, 2012, 27(6): 941–944.
ZHANG Chuntao, LIU Xuefei, XIANG Ruiyin, et al. Multi-step-prediction of chaotic time series based on maximized mutual information[J]. Control and Decision, 2012, 27(6): 941–944. |