高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无线物理层密钥生成技术发展及新的挑战

黄开枝 金梁 陈亚军 楼洋明 周游 马克明 许晓明 钟州 张胜军

黄开枝, 金梁, 陈亚军, 楼洋明, 周游, 马克明, 许晓明, 钟州, 张胜军. 无线物理层密钥生成技术发展及新的挑战[J]. 电子与信息学报. doi: 10.11999/JEIT200002
引用本文: 黄开枝, 金梁, 陈亚军, 楼洋明, 周游, 马克明, 许晓明, 钟州, 张胜军. 无线物理层密钥生成技术发展及新的挑战[J]. 电子与信息学报. doi: 10.11999/JEIT200002
Kaizhi HUANG, Liang JIN, Yajun CHEN, Yangming LOU, You ZHOU, Keming MA, Xiaoming XU, Zhou ZHONG, Shengjun ZHANG. Development of Wireless Physical Layer Key Generation Technology and New Challenges[J]. Journal of Electronics and Information Technology. doi: 10.11999/JEIT200002
Citation: Kaizhi HUANG, Liang JIN, Yajun CHEN, Yangming LOU, You ZHOU, Keming MA, Xiaoming XU, Zhou ZHONG, Shengjun ZHANG. Development of Wireless Physical Layer Key Generation Technology and New Challenges[J]. Journal of Electronics and Information Technology. doi: 10.11999/JEIT200002

无线物理层密钥生成技术发展及新的挑战

doi: 10.11999/JEIT200002
基金项目: 国家自然科学基金(61521003, 61701538, 61871404, 61801435, 61601514),国家科技重大专项“新一代宽带无线移动通信网”(2018ZX03002002)
详细信息
    作者简介:

    黄开枝:女,1973年出生,教授、博士生导师,研究方向为移动通信网络及信息安全

    金梁:男,1969年出生,教授、博士生导师,研究方向为移动通信网络及信息安全

    许晓明:男,1988年出生,副研究员,研究方向为移动通信网络及信息安全

    通讯作者:

    许晓明 ee_xiaomingxu@sina.com

  • 中图分类号: TN918; TN915.81

Development of Wireless Physical Layer Key Generation Technology and New Challenges

Funds: The National Natural Science Foundation of China (61521003, 61701538,61871404, 61801435, 61601514), The National Science and Technology Major Project (2018ZX03002002)
  • 摘要: 物理层安全技术从信息论安全理论出发,保障通信安全,是实现安全与通信一体化的关键手段,逐渐成为国内外研究热点。该文围绕无线通信物理层密钥生成技术研究,主要聚焦在物理层密钥生成技术的理论模型,机制机理和研究现状,重点对比分析了两种不同类型密钥生成算法,即源型密钥生成算法和信道型密钥生成算法的区别和联系,揭示了物理层密钥技术利用通信信道内在安全属性促进通信安全的实质。特别地,该文给出了一种可行的物理层密钥生成5G工程实现框架。最后,该文展望了物理层密钥生成技术未来可能的研究方向。
  • 图  1  5G三大典型应用场景

    图  2  源型密钥生成模型

    图  3  信道型密钥生成模型

    图  4  面向集中化处理无线接入网的PLSU在基站侧的实现框图

    图  5  PLSU在终端侧的实现框图

    表  1  源型密钥生成的相关实验总结

    测试环境共享随机源实验床相关文献
    WiFi(IEEE 802.11)CSI,RSSIntel5300NIC, USRP, WARP[14,16-18]
    IoT(IEEE 802.15)RSSMICAz[25], TelosB[26][19,27]
    BluetoothRSS智能手机[20]
    LTERSS智能手机[21]
    下载: 导出CSV

    表  2  源型密钥生成步骤

    步骤功能方法目标
    共享随机源获取为密钥生成提供密钥源互易信道
    接收信号
    一致
    安全
    高效
    量化将共享随机源量化为序列等概量化
    均匀量化
    双门限量化
    矢量量化
    量化比特数量多
    量化误比特率小
    量化序列随机性好
    信息协商删除或纠正错误比特Cascade方法
    纠错编码方法
    纠错能力强
    协商效率高
    信息泄露少
    隐私放大保证密钥安全性和随机性私密信息抽取器
    通用Hash函数
    破解概率低于密钥强度
    通过NIST测试
    下载: 导出CSV
  • [1] 史光坤. LTE/SAE系统密钥管理方案的研究与改进[D]. [博士论文], 吉林大学, 2017.

    SHI Guangkun. The research and improvement of the key management schemes in LTE/SAE system[D]. [Ph. D. dissertation], Jilin University, 2017.
    [2] 雷新雨. 新型公开密钥交换算法的理论与应用研究[D]. [博士论文], 重庆大学, 2015.

    LEI Xinyu. Research on theory and application of new-type public key exchange algorithms[D]. [Ph. D. dissertation], Chongqing University, 2015.
    [3] GOKEY M. NSA GCHQ SIM card hack Snowden leak news[EB/OL]. https://www.digitaltrends.com/mobile/nsa-gchq-sim-card-hack-snowden-leak-news/, 2015.
    [4] 5G White Paper. 5G: Rethink mobile communications for 2020+[Z]. Future Forum 5G SIG, 2014.
    [5] SHANNON C E. Communication theory of secrecy systems[J]. Bell System Technical Journal, 1949, 28(4): 656–715. doi:  10.1002/j.1538-7305.1949.tb00928.x
    [6] WYNER A D. The wire-tap channel[J]. Bell System Technical Journal, 1975, 54(8): 1355–1387. doi:  10.1002/j.1538-7305.1975.tb02040.x
    [7] ZHANG Junqing, DUONG T Q, MARSHALL A, et al. Key generation from wireless channels: A review[J]. IEEE Access, 2016, 4: 614–626. doi:  10.1109/ACCESS.2016.2521718
    [8] ZHANG Junqing, WOODS R, DUONG T Q, et al. Experimental study on key generation for physical layer security in wireless communications[J]. IEEE Access, 2016, 4: 4464–4477. doi:  10.1109/ACCESS.2016.2604618
    [9] MAURER U M. Secret key agreement by public discussion from common information[J]. IEEE Transactions on Information Theory, 1993, 39(3): 733–742. doi:  10.1109/18.256484
    [10] AHLSWEDE R and CSISZAR I. Common randomness in information theory and cryptography. I. Secret sharing[J]. IEEE Transactions on Information Theory, 1993, 39(4): 1121–1132. doi:  10.1109/18.243431
    [11] HERSHEY J E, HASSAN A A, and YARLAGADDA R. Unconventional cryptographic keying variable management[J]. IEEE Transactions on Communications, 1995, 43(1): 3–6. doi:  10.1109/26.385951
    [12] MARINO F, PAOLINI E, and CHIANI M. Secret key extraction from a UWB channel: Analysis in a real environment[C]. 2014 IEEE International Conference on Ultra-WideBand (ICUWB), Paris, France, 2014: 80–85. doi: 10.1109/ICUWB.2014.6958955.
    [13] HUANG Jingjing and JIANG Ting. Dynamic secret key generation exploiting ultra-wideband wireless channel characteristics[C]. 2015 IEEE Wireless Communications and Networking Conference (WCNC), New Orleans, USA, 2015: 1701–1706. doi: 10.1109/WCNC.2015.7127724.
    [14] LIU Hongbo, WANG Yang, YANG Jie, et al. Fast and practical secret key extraction by exploiting channel response[C]. IEEE International Conference on Computer Communications (INFOCOM), Turin, Italy, 2013: 3048–3056. doi:  10.1109/INFCOM.2013.6567117.
    [15] ZHANG Junqing, MARSHALL A, WOODS R, et al. Efficient key generation by exploiting randomness from channel responses of individual OFDM subcarriers[J]. IEEE Transactions on Communications, 2016, 64(6): 2578–2588. doi:  10.1109/TCOMM.2016.2552165
    [16] MATHUR S, TRAPPE W, MANDAYAM N, et al. Radio-telepathy: Extracting a secret key from an unauthenticated wireless channel[C]. The 14th ACM International Conference on Mobile Computing and Networking, San Francisco, USA, 2008: 128–139. doi: 10.1145/1409944.1409960.
    [17] ZENG Kai, WU D, CHAN An, et al. Exploiting multiple-antenna diversity for shared secret key generation in wireless networks[C]. 2010 Proceedings IEEE INFOCOM, San Diego, USA, 2010: 1–9. doi: 10.1109/INFCOM.2010.5462004.
    [18] WEI Yunchuan, ZENG Kai, and MOHAPATRA P. Adaptive wireless channel probing for shared key generation based on PID controller[J]. IEEE Transactions on Mobile Computing, 2013, 12(9): 1842–1852. doi:  10.1109/TMC.2012.144
    [19] HU Xiaoyan, JIN Liang, HUANG Kaizhi, et al. Physical layer secret key generation scheme based on signal propagation characteristics[J]. Acta Electronica Sinica, 2019, 47(2): 483–488. doi:  10.3969/j.issn.0372-2112.2019.02.032
    [20] PREMNATH S N, GOWDA P L, KASERA S K, et al. Secret key extraction using bluetooth wireless signal strength measurements[C]. 2014 Eleventh Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), Singapore, 2014: 293–301. doi:  10.1109/SAHCN.2014.6990365.
    [21] CHEN Kan, NATARAJAN B B, and SHATTIL S. Secret key generation rate with power allocation in relay-based LTE-A networks[J]. IEEE Transactions on Information Forensics and Security, 2015, 10(11): 2424–2434. doi:  10.1109/TIFS.2015.2462756
    [22] HALPERIN D, HU Wenjun, SHETH A, et al. Tool release: Gathering 802.11n traces with channel state information[J]. ACM SIGCOMM Computer Communication Review, 2011, 41(1): 53. doi:  10.1145/1925861.1925870
    [23] NI. USRP E320 (ZYNQ-7045, 2X2, 70 MHZ-6 GHZ, Board Only)–Ettus Research[EB/OL]. https://www.yottavolt.com/shop/usrp-e320-zynq-7045-2x2-70-mhz-6-ghz-board-only-ettus-research/, 2020.
    [24] Wiki. Wireless open-access research platform[EB/OL]. http://warpproject.org/trac/wiki/HardwarePlatform/, 2013.
    [25] Crossbow Technology. MICAz datasheet[EB/OL]. http://www.memsic.com/userfiles/files/Datasheets/WSN/micaz_datasheet-t.pdf, 2011.
    [26] MEMSC. TelosB datasheet[EB/OL]. http://www.willow.co.uk/TelosB_Datasheet.pdf, 2011.
    [27] WUNDER G, FRITSCHEK R, and REAZ K. RECiP: Wireless channel reciprocity restoration method for varying transmission power[C]. 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Valencia, Spain, 2016: 1–5. doi: 10.1109/PIMRC.2016.7794581.
    [28] LOU Yangming, JIN Liang, ZHONG Zhou, et al. Secret key generation scheme based on MIMO received signal spaces[J]. Scientia Sinica Informationis, 2017, 47(3): 362–373. doi:  10.1360/N112016-00001
    [29] TAHA H and ALSUSA E. Secret key exchange using private random precoding in MIMO FDD and TDD systems[J]. IEEE Transactions on Vehicular Technology, 2017, 66(6): 4823–4833. doi:  10.1109/TVT.2016.2611565
    [30] TAHA H and ALSUSA E. Secret key exchange under physical layer security using MIMO private random precoding in FDD systems[C]. 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 2016: 1–6. doi: 10.1109/ICC.2016.7511622.
    [31] SHARIFIAN S, LIN Fuchun, and SAFAVI-NAINI R. Secret key agreement using a virtual wiretap channel[C]. IEEE Conference on Computer Communications (INFOCOM), Atlanta, USA, 2017: 1–9. doi: 10.1109/INFOCOM.2017.8057119.
    [32] KHISTI A. Secret-key agreement over non-coherent block-fading channels with public discussion[J]. IEEE Transactions on Information Theory, 2016, 62(12): 7164–7178. doi:  10.1109/TIT.2016.2618861
    [33] ZHANG Shengjun, JIN Ling, LOU Yangming, et al. Secret key generation based on two-way randomness for TDD-SISO system[J]. China Communications, 2018, 15(7): 202–216. doi:  10.1109/CC.2018.8424614
    [34] WU Feilong, WANG Wenjie, WANG Huiming, et al. A unified mathematical model for spatial scrambling based secure wireless communication and its wiretap method[J]. Scientia Sinica Informationis, 2012, 42(4): 483–492. doi:  10.1360/112011-942
    [35] HARRISON W K, ALMEIDA J, BLOCH M R, et al. Coding for secrecy: An overview of error-control coding techniques for physical-layer security[J]. IEEE Signal Processing Magazine, 2013, 30(5): 41–50. doi:  10.1109/MSP.2013.2265141
    [36] NEGI R and GOEL S. Secret communication using artificial noise[C]. VTC-2005-Fall. 2005 IEEE 62nd Vehicular Technology Conference, 2005, Dallas, USA, 2005: 1906–1910. doi: 10.1109/VETECF.2005.1558439.
    [37] GOEL S and NEGI R. Guaranteeing secrecy using artificial noise[J]. IEEE Transactions on Wireless Communications, 2008, 7(6): 2180–2189. doi:  10.1109/TWC.2008.060848
    [38] LI Xiaohua, HWU J, and RATAZZI E P. Array redundancy and diversity for wireless transmissions with low probability of interception[C]. 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, Toulouse, France, 2006: 211–221. doi: 10.1109/ICASSP.2006.1661021.
    [39] LI Xiaohua, HWU J, and RATAZZI E. Using antenna array redundancy and channel diversity for secure wireless transmissions[J]. Journal of Communications, 2007, 2(3): 24–32. doi:  10.4304/jcm.2.3.24-32
    [40] FOUNTZOULAS Y, KOSTA A, and KARYSTINOS G N. Polar-code-based security on the BSC-modeled HARQ in fading[C]. 2016 23rd International Conference on Telecommunications (ICT), Thessaloniki, Greece, 2016: 1–5. doi: 10.1109/ICT.2016.7500449.
    [41] ZHANG Yingxian, YANG Zhen, LIU Aijun, et al. Secure transmission over the wiretap channel using polar codes and artificial noise[J]. IET Communications, 2017, 11(3): 377–384. doi:  10.1049/iet-com.2016.0429
    [42] BAI Huiqing, JIN Liang, and YI Ming. Artificial noise aided polar codes for physical layer security[J]. China Communications, 2017, 14(12): 15–24. doi:  10.1109/cc.2017.8246334
    [43] TOPAL O A, KURT G K, and ÖZBEK B. Key error rates in physical layer key generation: Theoretical analysis and measurement-based verification[J]. IEEE Wireless Communications Letters, 2017, 6(6): 766–769. doi:  10.1109/LWC.2017.2740290
    [44] ZHANG Junqing, RAJENDRAN S, SUN Zhi, et al. Physical layer security for the internet of things: Authentication and key generation[J]. IEEE Wireless Communications, 2019, 26(5): 92–98. doi:  10.1109/MWC.2019.1800455
    [45] JIN Henglei, HUANG Kaizhi, XIAO Shuaifang, et al. A two-layer secure quantization algorithm for secret key generation with correlated eavesdropping channel[J]. IEEE Access, 2019, 7: 26480–26487. doi:  10.1109/access.2019.2893594
    [46] JIAO Long, WANG Ning, WANG Pu, et al. Physical layer key generation in 5G wireless networks[J]. IEEE Wireless Communications, 2019, 26(5): 48–54. doi:  10.1109/MWC.001.1900061
    [47] ZENG Kai. Physical layer key generation in wireless networks: Challenges and opportunities[J]. IEEE Communications Magazine, 2015, 53(6): 33–39. doi:  10.1109/MCOM.2015.7120014
    [48] JIN Liang, ZHANG Shengjun, LOU Yangming, et al. Secret key generation with cross multiplication of two-way random signals[J]. IEEE Access, 2019, 7: 113065–113080. doi:  10.1109/access.2019.2935206
    [49] LI Guyue, SUN Chen, ZHANG Junqing, et al. Physical layer key generation in 5G and beyond wireless communications: Challenges and opportunities[J]. Entropy, 2019, 21(5): 497. doi:  10.3390/e21050497
    [50] CHEN Xuxing, HE Zunwen, ZHANG Yan, et al. A key generation scheme for wireless communication based on channel characteristics[J]. Journal of Terahertz Science and Electronic Information Technology, 2017, 15(5): 834–840. doi:  10.11805/TKYDA201705.0834
    [51] QIN Dongrun and DING Zhi. Exploiting multi-antenna non-reciprocal channels for shared secret key generation[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(12): 2693–2705. doi:  10.1109/TIFS.2016.2594143
    [52] LI Guyue, HU Aiqun, SUN Chen, et al. Constructing reciprocal channel coefficients for secret key generation in FDD systems[J]. IEEE Communications Letters, 2018, 22(12): 2487–2490. doi:  10.1109/LCOMM.2018.2875708
    [53] LI Shanshan, CHENG Mengfan, DENG Lei, et al. Secure key distribution strategy in OFDM-PON by utilizing the redundancy of training symbol and digital chaos technique[J]. IEEE Photonics Journal, 2018, 10(2): 7201108. doi:  10.1109/jphot.2018.2815001
    [54] ZHAO Jun. A survey of reconfigurable intelligent surfaces: Towards 6G wireless communication networks with massive MIMO 2.0[J]. arXiv preprint arXiv: 1907.04789v1, 2019.
    [55] DI RENZO M, DEBBAH M, PHAN-HUY D T, et al. Smart radio environments empowered by reconfigurable AI meta-surfaces: An idea whose time has come[J]. EURASIP Journal on Wireless Communications and Networking, 2019, 2019(1): 129. doi:  10.1186/s13638-019-1438-9
  • [1] 李旻, 何婷婷.  基于随机数三角阵映射的高维大数据二分聚类初始中心高效鲁棒生成算法, 电子与信息学报. 2020, 42(0): 1-9. doi: 10.11999/JEIT200043
    [2] 唐伦, 周钰, 谭颀, 魏延南, 陈前斌.  基于强化学习的5G网络切片虚拟网络功能迁移算法, 电子与信息学报. 2020, 42(3): 669-677. doi: 10.11999/JEIT190290
    [3] 赵国繁, 唐伦, 胡彦娟, 赵培培, 陈前斌.  面向可靠性的5G网络切片重构及映射算法, 电子与信息学报. 2020, 42(6): 1478-1485. doi: 10.11999/JEIT190500
    [4] 黄开枝, 万政, 楼洋明, 肖帅芳, 许晓明.  基于极化码的无协商密钥物理层安全传输方案, 电子与信息学报. 2020, 42(0): 1-7. doi: 10.11999/JEIT190948
    [5] 洪涛, 张更新.  人工噪声辅助的物理层安全信号峰均功率比减低算法, 电子与信息学报. 2018, 40(6): 1426-1432. doi: 10.11999/JEIT170739
    [6] 李歆昊, 张旻, 韩树楠.  基于多重分形谱的物理层帧结构检测算法研究, 电子与信息学报. 2018, 40(2): 400-407. doi: 10.11999/JEIT170356
    [7] 孔媛媛, 杨震, 吕斌, 田峰.  单载波频域均衡系统中基于信道频域响应的密钥生成机制研究, 电子与信息学报. 2018, 40(5): 1017-1023. doi: 10.11999/JEIT170772
    [8] 肖帅芳, 郭云飞, 白慧卿, 金梁, 黄开枝.  面向物联网准静态信道的中继协作密钥生成方法, 电子与信息学报. 2018, 40(1): 50-56. doi: 10.11999/JEIT170384
    [9] 王琦, 赵雄文, 张蕊, 李树, 王蒙军, 孙韶辉.  基于容量相关字典的5G毫米波大规模天线单元选择算法, 电子与信息学报. 2017, 39(12): 2990-2998. doi: 10.11999/JEIT170228
    [10] 基于单程建路的高效快速双向标签交换路径生成算法, 电子与信息学报. 2016, 38(3): 707-712. doi: 10.11999/JEIT150754
    [11] 王旭, 金梁, 宋华伟, 黄开枝.  基于无线信道参数的物理层安全密钥容量, 电子与信息学报. 2016, 38(10): 2612-2618. doi: 10.11999/JEIT160032
    [12] 郭宇弘, 黎塔, 肖业鸣, 潘接林, 颜永红.  基于加权有限状态机的动态匹配词图生成算法, 电子与信息学报. 2014, 36(1): 140-146. doi: 10.3724/SP.J.1146.2013.00422
    [13] 王亚东, 黄开枝, 吉江.  一种多天线信道特征投影物理层安全编码算法, 电子与信息学报. 2012, 34(7): 1653-1658. doi: 10.3724/SP.J.1146.2011.01318
    [14] 王会梅, 鲜明, 王国玉.  基于扩展网络攻击图的网络攻击策略生成算法, 电子与信息学报. 2011, 33(12): 3015-3021. doi: 10.3724/SP.J.1146.2011.00414
    [15] 何光华, 白宝明, 王雪鹏.  基于多元LDPC码扩展最小和译码的软信息迭代生成算法, 电子与信息学报. 2011, 33(11): 2622-2627. doi: 10.3724/SP.J.1146.2011.00322
    [16] 宋昕, 汪晋宽, 韩英华.  基于二次型约束的鲁棒自适应波束形成算法, 电子与信息学报. 2008, 30(11): 2662-2665. doi: 10.3724/SP.J.1146.2007.00713
    [17] 王欢良, 韩纪庆, 郑铁然, 李海峰.  基于K-L散度的最大后验弧主导的混淆网络生成算法, 电子与信息学报. 2008, 30(5): 1109-1112. doi: 10.3724/SP.J.1146.2006.01760
    [18] 詹明, 张翠芳.  一种基于混沌控制m序列的密钥序列生成方案, 电子与信息学报. 2006, 28(12): 2351-2354.
    [19] 韦立登, 李绍恩, 吴一戎, 向茂生.  SAR原始回波信号生成算法的性能比较研究, 电子与信息学报. 2005, 27(2): 262-265.
    [20] 马卫局, 冯登国, 巫治平, 张斌.  一类密钥流生成器的相关分析, 电子与信息学报. 2004, 26(8): 1282-1287.
  • 加载中
  • 图(5) / 表ll (2)
    计量
    • 文章访问数:  129
    • HTML全文浏览量:  58
    • PDF下载量:  14
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-01-02
    • 修回日期:  2020-08-07
    • 网络出版日期:  2020-08-21

    目录

      /

      返回文章
      返回

      官方微信,欢迎关注