[1]
|
SLOCK D T M. On the convergence behavior of the LMS and the normalized LMS algorithms[J]. IEEE Transactions on Signal Processing, 1993, 41(9): 2811–2825. doi: 10.1109/78.236504 |
[2]
|
KANG B, YOO J, and PARK P. Bias-compensated normalised LMS algorithm with noisy input[J]. Electronics Letters, 2013, 49(8): 538–539. doi: 10.1049/el.2013.0246 |
[3]
|
JUNG S M and PARK P G. Normalised least-mean-square algorithm for adaptive filtering of impulsive measurement noises and noisy inputs[J]. Electronics Letters, 2013, 49(20): 1270–1272. doi: 10.1049/el.2013.2482 |
[4]
|
WANG Wenyuan, ZHAO Haiquan, LU Lu, et al. Bias-compensated constrained least mean square adaptive filter algorithm for noisy input and its performance analysis[J]. Digital Signal Processing, 2019, 84: 26–37. doi: 10.1016/j.dsp.2018.07.021 |
[5]
|
LIU Weifeng, POKHAREL P P, and PRINCIPE J C. The kernel least-mean-square algorithm[J]. IEEE Transactions on Signal Processing, 2008, 56(2): 543–554. doi: 10.1109/TSP.2007.907881 |
[6]
|
LIU Yuqi, SUN Chao, and JIANG Shouda. A reduced Gaussian kernel Least-Mean-Square algorithm for nonlinear adaptive signal processing[J]. Circuits, Systems, and Signal Processing, 2019, 38(1): 371–394. doi: 10.1007/s00034-018-0862-0 |
[7]
|
邱天爽, 杨志春, 李小兵, 等. α稳定分布下的加权平均最小p-范数算法[J]. 电子与信息学报, 2007, 29(2): 410–413.
QIU Tianshuang, YANG Zhichun, LI Xiaobing, et al. A weighted average least p-norm algorithm under alpha stable noise conditions[J]. Journal of Electronics &Information Technology, 2007, 29(2): 410–413. |
[8]
|
李群生, 赵剡, 寇磊, 等. 一种基于多尺度核学习的仿射投影滤波算法[J]. 电子与信息学报, 2020, 42(4): 924–931. doi: 10.11999/JEIT190023
LI Qunsheng, ZHAO Yan, KOU Lei, et al. An affine projection algorithm with multi-scale kernels learning[J]. Journal of Electronics &Information Technology, 2020, 42(4): 924–931. doi: 10.11999/JEIT190023 |
[9]
|
LIN C J. On the convergence of multiplicative update algorithms for nonnegative matrix factorization[J]. IEEE Transactions on Neural Networks, 2007, 18(6): 1589–1596. doi: 10.1109/TNN.2007.895831 |
[10]
|
BRO R and DE JONG S. A fast non-negativity-constrained least squares algorithm[J]. Journal of Chemometrics, 1997, 11(5): 393–401. doi: 10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.0.CO;2-L |
[11]
|
CHEN Jie, RICHARD C, BERMUDEZ J C M, et al. Nonnegative least-mean-square algorithm[J]. IEEE Transactions on Signal Processing, 2011, 59(11): 5225–5235. doi: 10.1109/TSP.2011.2162508 |
[12]
|
CHEN Jie, RICHARD C, BERMUDEZ J C M, et al. Variants of non-negative least-mean-square algorithm and convergence analysis[J]. IEEE Transactions on Signal Processing, 2014, 62(15): 3990–4005. doi: 10.1109/TSP.2014.2332440 |
[13]
|
CHEN Jie, BERMUDEZ J C M, and RICHARD C. Steady-state performance of non-negative least-mean-square algorithm and its variants[J]. IEEE Signal Processing Letters, 2014, 21(8): 928–932. doi: 10.1109/LSP.2014.2320944 |
[14]
|
CHEN Jie, RICHARD C, and BERMUDEZ J C M. Reweighted nonnegative least-mean-square algorithm[J]. Signal Processing, 2016, 128: 131–141. doi: 10.1016/j.sigpro.2016.03.017 |
[15]
|
SHOKROLAHI S M and JAHROMI M N. Logarithmic reweighting nonnegative least mean square algorithm[J]. Signal, Image and Video Processing, 2018, 12(1): 51–57. doi: 10.1007/s11760-017-1129-0 |
[16]
|
CHEN Badong, XING Lei, ZHAO Haiquan, et al. Generalized correntropy for robust adaptive filtering[J]. IEEE Transactions on Signal Processing, 2016, 64(13): 3376–3387. doi: 10.1109/TSP.2016.2539127 |
[17]
|
SONG Insun, PARK P, and NEWCOMB R W. A normalized least mean squares algorithm with a step-size scaler against impulsive measurement noise[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2013, 60(7): 442–445. doi: 10.1109/TCSII.2013.2258266 |
[18]
|
FAN Kuan’gang, QIU Haiyun, PEI Chunyang, et al. Robust non-negative least mean square algorithm based on step-size scaler against impulsive noise[J]. Advances in difference equations, 2020, 2020(1): 199. doi: 10.1186/s13662-020-02654-5 |
[19]
|
HUANG Fuyi, ZHANG Jiashu, and ZHANG Sheng. A family of robust adaptive filtering algorithms based on sigmoid cost[J]. Signal Processing, 2018, 149: 179–192. doi: 10.1016/j.sigpro.2018.03.013 |
[20]
|
XIONG Kui and WANG Shiyuan. Robust least mean logarithmic square adaptive filtering algorithms[J]. Journal of the Franklin Institute, 2019, 356(1): 654–674. doi: 10.1016/j.jfranklin.2018.10.019 |
[21]
|
代振, 王平波, 卫红凯. 非高斯背景下基于Sigmoid函数的信号检测[J]. 电子与信息学报, 2019, 41(12): 2945–2950. doi: 10.11999/JEIT190012
DAI Zhen, WANG Pingbo, and WEI Hongkai. Signal detection based on Sigmoid function in non-Gaussian noise[J]. Journal of Electronics &Information Technology, 2019, 41(12): 2945–2950. doi: 10.11999/JEIT190012 |