高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

5G网络空间安全对抗博弈

徐瑨 吴慧慈 陶小峰

徐瑨, 吴慧慈, 陶小峰. 5G网络空间安全对抗博弈[J]. 电子与信息学报, 2020, 42(10): 2319-2329. doi: 10.11999/JEIT200058
引用本文: 徐瑨, 吴慧慈, 陶小峰. 5G网络空间安全对抗博弈[J]. 电子与信息学报, 2020, 42(10): 2319-2329. doi: 10.11999/JEIT200058
Jin XU, Huici WU, Xiaofeng TAO. 5G Cyberspace Security Game[J]. Journal of Electronics and Information Technology, 2020, 42(10): 2319-2329. doi: 10.11999/JEIT200058
Citation: Jin XU, Huici WU, Xiaofeng TAO. 5G Cyberspace Security Game[J]. Journal of Electronics and Information Technology, 2020, 42(10): 2319-2329. doi: 10.11999/JEIT200058

5G网络空间安全对抗博弈

doi: 10.11999/JEIT200058
基金项目: 国家自然科学基金(61932005, 61901051, 61501057),中央高校基础科研费专项资金(2019RC55)
详细信息
    作者简介:

    徐瑨:女,1981年生,副教授,研究方向为宽带移动通信、无线网络安全

    吴慧慈:女,1992年生,助理教授,研究方向为无线接入安全、异构融合协作

    陶小峰:男,1970年生,教授,博士生导师,研究方向为无线通信、移动通信安全

    通讯作者:

    陶小峰 taoxf@bupt.edu.cn

  • 中图分类号: TN929.5

5G Cyberspace Security Game

Funds: The National Natural Science Foundation of China (61932005, 61901051, 61501057), The Fundamental Research Funds for The Central Universities (2019RC55)
  • 摘要: 随着移动通信技术的快速发展和第5代移动通信(5G)网络的商用,网络空间安全问题日益凸显。该文针对5G网络空间安全中对抗博弈问题进行探讨,从静态博弈、动态博弈、基于演化和图论的博弈等基础模型以及窃听与窃听对抗、干扰与干扰对抗等典型对抗种类方面,对当前国内外网络空间安全对抗博弈的研究进行分析和归纳,并进一步阐述5G网络空间安全对抗博弈研究中潜在的基础理论和对抗规律研究方向,分析5G环境下安全对抗博弈研究的必要性及面临的挑战,为5G网络空间安全攻防对抗研究提供新视角。
  • 图  1  5G网络架构及新增典型安全需求

    图  2  多天线系统窃听与协作窃听对抗以及干扰与干扰对抗

    表  1  典型的网络空间安全对抗博弈模型

    博弈类型博弈模型参考文献
    基于静态博弈的安全对抗斯塔伯克博弈[19-25]
    贝叶斯博弈[26]
    随机博弈[27-30]
    混合策略博弈[31]
    零和博弈[32,33]
    完全/不完全信息博弈[20,26,30]
    基于动态博弈的安全对抗完全/不完全信息博弈[34,35]
    微分博弈[36-38]
    信号传递博弈[39]
    基于马尔可夫判决[40,41]
    递阶对策[42]
    基于演化博弈的安全对抗对称/非对称博弈[43,44]
    完全/不完全信息演化博弈[45]
    马尔可夫演化博弈[46]
    结合图论的博弈对抗贝叶斯攻击图[47]
    概率攻击图[48]
    下载: 导出CSV

    表  2  5G无线接入网中的典型安全对抗博弈

    对抗种类应用模型参考文献
    窃听与窃听对抗斯塔伯克博弈[52-59]
    契约理论[60]
    拍卖模型[61-63]
    联盟博弈[64]
    Bertrand博弈[65,66]
    零和博弈[67,68]
    干扰与干扰对抗斯塔伯克博弈[22,23]
    贝叶斯博弈[69]
    协作干扰攻击间的博弈[70]
    基于学习的干扰对抗[71,72]
    下载: 导出CSV
  • [1] International Telecommunications Union. Framework and overall objectives of the future development of IMT for 2020 and beyond[R]. ITU-R, 2015.
    [2] CUI Qimei, SHI Yulong, TAO Xiaofeng, et al. A unified protocol stack solution for LTE and WLAN in future mobile converged networks[J]. IEEE Wireless Communications, 2014, 21(6): 24–33. doi:  10.1109/MWC.2014.7000968
    [3] WU Huici, TAO Xiaofeng, ZHANG Ning, et al. Cooperative UAV cluster-assisted terrestrial cellular networks for ubiquitous coverage[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(9): 2045–2058. doi:  10.1109/JSAC.2018.2864418
    [4] LORENZ C, HOCK D, SCHERER J, et al. An SDN/NFV-enabled enterprise network architecture offering fine-grained security policy enforcement[J]. IEEE Communications Magazine, 2017, 55(3): 217–223. doi:  10.1109/MCOM.2017.1600414CM
    [5] ORDONEZ-LUCENA J, AMEIGEIRAS P, LOPEZ D, et al. Network slicing for 5G with SDN/NFV: Concepts, architectures, and challenges[J]. IEEE Communications Magazine, 2017, 55(5): 80–87. doi:  10.1109/MCOM.2017.1600935
    [6] XU Xiaodong, ZHANG Huixin, DAI Xun, et al. SDN based next generation mobile network with service slicing and trials[J]. China Communications, 2014, 11(2): 65–77. doi:  10.1109/CC.2014.6821738
    [7] 唐伦, 周钰, 杨友超, 等. 5G网络切片场景中基于预测的虚拟网络功能动态部署算法[J]. 电子与信息学报, 2019, 41(9): 2071–2078. doi:  10.11999/JEIT180894

    TANG Lun, ZHOU Yu, YANG Youchao, et al. Virtual network function dynamic deployment algorithm based on prediction for 5G network slicing[J]. Journal of Electronics &Information Technology, 2019, 41(9): 2071–2078. doi:  10.11999/JEIT180894
    [8] RUPPRECHT D, DABROWSKI A, HOLZ T, et al. On security research towards future mobile network generations[J]. IEEE Communications Surveys & Tutorials, 2018, 20(3): 2518–2542. doi:  10.1109/COMST.2018.2820728
    [9] DUAN Xiaoyu and WANG Xianbin. Authentication handover and privacy protection in 5G HetNets using software-defined networking[J]. IEEE Communications Magazine, 2015, 53(4): 28–35. doi:  10.1109/MCOM.2015.7081072
    [10] LU Xiao, NIYATO D, JIANG Hai, et al. Cyber insurance for heterogeneous wireless networks[J]. IEEE Communications Magazine, 2018, 56(6): 21–27. doi:  10.1109/MCOM.2018.1700504
    [11] 季新生, 徐水灵, 刘文彦, 等. 一种面向安全的虚拟网络功能动态异构调度方法[J]. 电子与信息学报, 2019, 41(10): 2435–2441. doi:  10.11999/JEIT181130

    JI Xinsheng, XU Shuiling, LIU Wenyan, et al. A security-oriented dynamic and heterogeneous scheduling method for virtual network function[J]. Journal of Electronics &Information Technology, 2019, 41(10): 2435–2441. doi:  10.11999/JEIT181130
    [12] ITU WP 5D. Minimum requirements related to technical performance for IMT-2020 radio interface(s)[R]. ITU-R, 2017.
    [13] 冯登国, 徐静, 兰晓. 5G移动通信网络安全研究[J]. 软件学报, 2018, 29(6): 1813–1825. doi:  10.13328/j.cnki.jos.005547

    FENG Dengguo, XU Jing, and LAN Xiao. Study on 5G mobile communication network security[J]. Journal of Software, 2018, 29(6): 1813–1825. doi:  10.13328/j.cnki.jos.005547
    [14] CAO Jin, MA Maode, LI Hui, et al. A survey on security aspects for 3GPP 5G networks[J]. IEEE Communications Surveys & Tutorials, 2020, 22(1): 170–195. doi:  10.1109/COMST.2019.2951818
    [15] KHAN R, KUMAR P, JAYAKODY D N K, et al. A survey on security and privacy of 5G technologies: Potential solutions, recent advancements, and future directions[J]. IEEE Communications Surveys & Tutorials, 2020, 22(1): 196–248. doi:  10.1109/COMST.2019.2933899
    [16] PONNIAH J, HU Y C, and KUMAR P R. A system-theoretic clean slate approach to provably secure Ad-Hoc wireless networking[J]. IEEE Transactions on Control of Network Systems, 2016, 3(2): 206–217. doi:  10.1109/TCNS.2015.2428309
    [17] ALPCAN T and BASAR T. Network Security: A Decision and Game-theoretic Approach[M]. Cambridge: Cambridge University Press, 2010: 37–313.
    [18] 杨义先, 钮心忻. 安全通论[M]. 北京: 电子工业出版社, 2018: 39–173.

    YANG Yixian and NIU Xinxin. General Theory of Information Security[M]. Beijing: Publishing House of Electronic Industry, 2018: 39–173.
    [19] DURKOTA K, LISÝ V, KIEKINTVELD C, et al. Case studies of network defense with attack graph games[J]. IEEE Intelligent Systems, 2016, 31(5): 24–30. doi:  10.1109/MIS.2016.74
    [20] SANJAB A and SAAD W. Data injection attacks on smart grids with multiple adversaries: A game-theoretic perspective[J]. IEEE Transactions on Smart Grid, 2016, 7(4): 2038–2049. doi:  10.1109/TSG.2016.2550218
    [21] WANG Kun, YUAN Li, MIYAZAKI T, et al. Jamming and eavesdropping defense in green cyber-physical transportation systems using a stackelberg game[J]. IEEE Transactions on Industrial Informatics, 2018, 14(9): 4232–4242. doi:  10.1109/TII.2018.2841033
    [22] AHMED I K and FAPOJUWO A O. Stackelberg equilibria of an anti-jamming game in cooperative cognitive radio networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2018, 4(1): 121–134. doi:  10.1109/TCCN.2017.2769121
    [23] JIA Luliang, XU Yuhua, SUN Youming, et al. Stackelberg game approaches for anti-jamming defence in wireless networks[J]. IEEE Wireless Communications, 2018, 25(6): 120–128. doi:  10.1109/MWC.2017.1700363
    [24] LI Yuzhe, SHI Dawei, and CHEN Tongwen. False data injection attacks on networked control systems: A stackelberg game analysis[J]. IEEE Transactions on Automatic Control, 2018, 63(10): 3503–3509. doi:  10.1109/TAC.2018.2798817
    [25] HAN Yi, ALPCAN T, CHAN J, et al. A game theoretical approach to defend against co-resident attacks in cloud computing: Preventing co-residence using semi-supervised learning[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(3): 556–570. doi:  10.1109/TIFS.2015.2505680
    [26] LA Q D, QUEK T Q S, LEE J, et al. Deceptive attack and defense game in honeypot-enabled networks for the internet of things[J]. IEEE Internet of Things Journal, 2016, 3(6): 1025–2035. doi:  10.1109/JIOT.2016.2547994
    [27] WANG Chunlei, MIAO Qing, and DAI Yiqi. Network survivability analysis based on stochastic game model[C]. The 4th International Conference on Multimedia Information Networking and Security, Nanjing, China, 2014: 199–204. doi: 10.1109/MINES.2012.147.
    [28] WEI Longfei, SARWAT A F, SAAD W, et al. Stochastic games for power grid protection against coordinated cyber-physical attacks[J]. IEEE Transactions on Smart Grid, 2018, 9(2): 684–694. doi:  10.1109/TSG.2016.2561266
    [29] 王元卓, 林闯, 程学旗, 等. 基于随机博弈模型的网络攻防量化分析方法[J]. 计算机学报, 2010, 33(9): 1748–1762. doi:  10.3724/SP.J.1016.2010.01748

    WANG Yuanzhuo, LIN Chuang, CHENG Xueqi, et al. Analysis for network attack-defense based on stochastic game model[J]. Chinese Journal of Computers, 2010, 33(9): 1748–1762. doi:  10.3724/SP.J.1016.2010.01748
    [30] DORASZELSKI U and ESCOBAR J F. A theory of regular markov perfect equilibria in dynamic stochastic games: Genericity, stability, and purification[J]. Theoretical Economics, 2010, 5(2): 369–402. doi:  10.3982/TE632
    [31] XIAO Liang, XU Dongjin, XIE Caixia, et al. Cloud storage defense against advanced persistent threats: A prospect theoretic study[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(3): 534–544. doi:  10.1109/JSAC.2017.2659418
    [32] ZHANG Rui, ZHU Quanyan, and HAYEL Y. A Bi-level game approach to attack-aware cyber insurance of computer networks[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(3): 779–794. doi:  10.1109/JSAC.2017.2672378
    [33] MIN Minghui, XIAO Liang, XIE Caixia, et al. Defense against advanced persistent threats in dynamic cloud storage: A colonel blotto game approach[J]. IEEE Internet of Things Journal, 2018, 5(6): 4250–4261. doi:  10.1109/JIOT.2018.2844878
    [34] LASZKA A, HORVATH G, FELEGYHAZI M, et al. FlipThem: Modeling Targeted Attacks with Flipit for Multiple Resources[M]. POOVENDRAN R and SAAD W. Decision and Game Theory for Security. Cham: Springer, 2014: 175–194. doi:  10.1007/978-3-319-12601-2_10.
    [35] WANG Chong, HOU Yunhe, and TEN C W. Determination of Nash equilibrium based on plausible attack-defense dynamics[J]. IEEE Transactions on Power Systems, 2017, 32(5): 3670–3680. doi:  10.1109/TPWRS.2016.2635156
    [36] HUANG Shirui, ZHANG Hengwei, WANG Jindong, et al. Markov differential game for network defense decision-making method[J]. IEEE Access, 2018, 6: 39621–39634. doi:  10.1109/ACCESS.2018.2848242
    [37] ZHANG Hengwei, JIANG Lü, HUANG Shirui, et al. Attack-defense differential game model for network defense strategy selection[J], IEEE Access, 2018, 7: 50618–50629. doi:  10.1109/ACCESS.2018.2880214.
    [38] GARCIA E, CASBEER D W, and PACHTER M. Design and analysis of state-feedback optimal strategies for the differential game of active defense[J]. IEEE Transactions on Automatic Control, 2019, 64(2): 553–568. doi:  10.1109/TAC.2018.2828088
    [39] SHEN Shigen, LI Yuanjie, XU Hongyun, et al. Signaling game based strategy of intrusion detection in wireless sensor networks[J]. Computers & Mathematics with Applications, 2011, 62(6): 2404–2416. doi:  10.1016/j.camwa.2011.07.027
    [40] MALEKI H, VALIZADEH S, KOCH W, et al. Markov modeling of moving target defense games[C]. The 2016 ACM Workshop on Moving Target Defense, Vienna, Austria, 2016: 81–92. doi:  10.1145/2995272.2995273.
    [41] LEI Cheng, MA Duohe, and ZHANG Hongqi. Optimal strategy selection for moving target defense based on Markov game[J]. IEEE Access, 2017, 5: 156–169. doi:  10.1109/ACCESS.2016.2633983
    [42] SEDJELMACI S A H, BRAHMI I H, ANSARI N, et al. Cyber security framework for vehicular network based on a hierarchical game[J]. IEEE Transactions on Emerging Topics in Computing, 2019. doi:  10.1109/TETC.2018.2890476
    [43] BALKENBORG D and SCHLAG K H. On the interpretation of evolutionary stable sets in symmetric and asymmetric games[R]. Mimeo, Bonn University Economics Department, 1994.
    [44] FIONDELLA L, RAHMAN A, LOWNES N, et al. Defense of high-speed rail with an evolutionary algorithm guided by game theory[J]. IEEE Transactions on Reliability, 2016, 65(2): 674–686. doi:  10.1109/TR.2015.2491602
    [45] HU Hao, LIU Yuling, ZHANG Hongqi, et al. Optimal network defense strategy selection based on incomplete information evolutionary game[J]. IEEE Access, 2018, 6: 29806–29821. doi:  10.1109/ACCESS.2018.2841885
    [46] HUANG Jianming, ZHANG Hengwei, and WANG Jindong. Markov evolutionary games for network defense strategy selection[J]. IEEE Access, 2017, 5: 19505–19516. doi:  10.1109/ACCESS.2017.2753278
    [47] MIEHLING E, RASOULI M, and TENEKETZIS D. Optimal defense policies for partially observable spreading processes on Bayesian attack graphs[C]. The 2nd ACM Workshop on Moving Target Defense, Colorado, USA, 2015: 67–76.
    [48] 陈小军, 方滨兴, 谭庆丰, 等. 基于概率攻击图的内部攻击意图推断算法研究[J]. 计算机学报, 2014, 37(1): 62–72.

    CHEN Xiaojun, FANG Binxing, TAN Qingfeng, et al. Inferring attack intent of malicious insider based on probabilistic attack graph model[J]. Chinese Journal of Computers, 2014, 37(1): 62–72.
    [49] FUDENBERG D and TIROLE J. Game Theory[M]. Cambridge: Massachusetts Institute of Technology Press, 1991: 65–203.
    [50] ABASS A A A, XIAO Liang, MANDAYAM N B, et al. Evolutionary game theoretic analysis of advanced persistent threats against cloud storage[J]. IEEE Access, 2017, 5: 8482–8491. doi:  10.1109/ACCESS.2017.2691326
    [51] BHARATHI S, KUMAR D, and RAM D. Defence against responsive and non-responsive jamming attack in cognitive radio networks: An evolutionary game theoretical approach[J]. The Journal of Engineering, 2018, 2018(2): 68–75. doi:  10.1049/joe.2017.0285
    [52] HAN Zhu, MARINA N, DEBBAH M, et al. Physical layer security game: How to date a girl with her boyfriend on the same table[C]. The 1st ICST International Conference on Game Theory for Networks, Istanbul, Turkey, 2009: 287–294. doi: 10.1109/GAMENETS.2009.5137412.
    [53] ZHANG Rongqing, SONG Lingyang, HAN Zhu, et al. Physical layer security for two-way untrusted relaying with friendly jammers[J]. IEEE Transactions on Vehicular Technology, 2012, 61(8): 3693–3704. doi:  10.1109/TVT.2012.2209692
    [54] CHU Zheng, CUMANAN K, DING Zhiguo, et al. Secrecy rate optimizations for a MIMO secrecy channel with a cooperative jammer[J]. IEEE Transactions on Vehicular Technology, 2015, 64(5): 1833–1847. doi:  10.1109/TVT.2014.2336092
    [55] WU Huici, TAO Xiaofeng, HAN Zhu, et al. Secure transmission in MISOME wiretap channel with multiple assisting jammers: Maximum secrecy rate and optimal power allocation[J]. IEEE Transactions on Communications, 2017, 65(2): 775–789. doi:  10.1109/TCOMM.2016.2636288
    [56] FANG He, XU Li, and WANG Xianbin. Coordinated multiple-relays based physical-layer security improvement: A single-leader multiple-followers stackelberg game scheme[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(1): 197–209. doi:  10.1109/TIFS.2017.2746001
    [57] FANG He, XU Li, ZOU Yulong, et al. Three-stage stackelberg game for defending against full-duplex active eavesdropping attacks in cooperative communication[J]. IEEE Transactions on Vehicular Technology, 2018, 67(11): 10788–10799. doi:  10.1109/TVT.2018.2868900
    [58] WANG Wei, TEH K C, LI K H, et al. On the impact of adaptive eavesdroppers in multi-antenna cellular networks[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(2): 269–279. doi:  10.1109/TIFS.2017.2746010
    [59] LUO Yijie, FENG Zhibin, JIANG Han, et al. Game-theoretic learning approaches for secure D2D communications against full-duplex active eavesdropper[J]. IEEE Access, 2019, 7: 41324–41335. doi:  10.1109/ACCESS.2019.2906845
    [60] LI Meng, ZHANG Yanru, WANG Li, et al. Incentive design for collaborative jamming using contract theory in physical layer security[C]. 2016 IEEE/CIC International Conference on Communications in China, Chengdu, China, 2016: 1–6, doi: 10.1109/ICCChina.2016.7636873.
    [61] HAN Zhu, MARINA N, DEBBAH M, et al. Improved wireless secrecy rate using distributed auction theory[C]. The 5th International Conference on Mobile Ad-hoc and Sensor Networks, Fujian, China, 2009: 442–447. doi: 10.1109/MSN.2009.73.
    [62] ZHANG Rongqing, SONG Lingyang, HAN Zhu, et al. Improve physical layer security in cooperative wireless network using distributed auction games[C]. 2011 IEEE Conference on Computer Communications Workshops, Shanghai, China, 2011: 18–23. doi: 10.1109/INFCOMW.2011.5928805.
    [63] KHAN A S, RAHULAMATHAVAN Y, BASUTLI B, et al. Blockchain-based distributive auction for relay-assisted secure communications[J]. IEEE Access, 2019, 7: 95555–95568. doi:  10.1109/ACCESS.2019.2929136
    [64] SAAD W, HAN Zhu, BASAR T, et al. Physical layer security: Coalitional games for distributed cooperation[C]. The 7th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, Seoul, South Korea, 2009: 1–8.
    [65] WANG Kun, YUAN Li, MIYAZAKI T, et al. Strategic antieavesdropping game for physical layer security in wireless cooperative networks[J]. IEEE Transactions on Vehicular Technology, 2017, 66(10): 9448–9457. doi:  10.1109/TVT.2017.2703305
    [66] WANG Kun, YUAN Li, MIYAZAKI T, et al. Antieavesdropping with selfish jamming in wireless networks: A Bertrand game approach[J]. IEEE Transactions on Vehicular Technology, 2017, 66(7): 6268–6279. doi:  10.1109/TVT.2016.2639827
    [67] YUKSEL M, LIU Xi, and ERKIP E. A secure communication game with a relay helping the eavesdropper[J]. IEEE Transactions on Information Forensics and Security, 2011, 6(3): 818–830. doi:  10.1109/TIFS.2011.2125956
    [68] ALSABA Y, LEOW C Y, and ABDUL RAHIM S K. A zero-sum game approach for non-orthogonal multiple access systems: Legitimate eavesdropper case[J]. IEEE Access, 2018, 6: 58764–58773. doi:  10.1109/ACCESS.2018.2874215
    [69] SAGDUYU Y E, BERRY R, and EPHREMIDES A. MAC games for distributed wireless network security with incomplete information of selfish and malicious user types[C]. The 2009 International Conference on Game Theory for Networks, Istanbul, Turkey, 2009: 130–139. doi:  10.1109/GAMENETS.2009.5137394.
    [70] TANG Ling, CHEN Hao, and LI Qianmu. Social tie based cooperative jamming for physical layer security[J]. IEEE Communications Letters, 2015, 19(10): 1790–1793. doi:  10.1109/LCOMM.2015.2462826
    [71] LÜ Shichao, XIAO Liang, HU Qing, et al. Anti-jamming power control game in unmanned aerial vehicle networks[C]. 2017 IEEE Global Communications Conference, Singapore, 2017: 1–6. doi: 10.1109/GLOCOM.2017.8253988.
    [72] LU Xiaozhen, XU Dongjin, XIAO Liang, et al. Anti-jamming communication game for UAV-aided VANETs[C]. 2017 IEEE Global Communications Conference, Singapore, 2017: 1–6. doi: 10.1109/GLOCOM.2017.8253987.
  • [1] 曾菊玲, 张春雷, 蒋砺思, 夏凌.  基于信道定价的无线虚拟网络资源分配策略:匹配/Stackelberg分层博弈, 电子与信息学报. doi: 10.11999/JEIT191032
    [2] 陈莹, 陈湟康.  基于多模态生成对抗网络和三元组损失的说话人识别, 电子与信息学报. doi: 10.11999/JEIT190154
    [3] 雷大江, 张策, 李智星, 吴渝.  基于多流融合生成对抗网络的遥感图像融合方法, 电子与信息学报. doi: 10.11999/JEIT190273
    [4] 张惊雷, 厚雅伟.  基于改进循环生成式对抗网络的图像风格迁移, 电子与信息学报. doi: 10.11999/JEIT190407
    [5] 易诗, 吴志娟, 朱竞铭, 李欣荣, 袁学松.  基于多尺度生成对抗网络的运动散焦红外图像复原, 电子与信息学报. doi: 10.11999/JEIT190495
    [6] 吴桐, 郑康锋, 伍淳华, 王秀娟, 郑赫慈.  网络空间安全中的人格研究综述, 电子与信息学报. doi: 10.11999/JEIT190806
    [7] 曹志义, 牛少彰, 张继威.  基于半监督学习生成对抗网络的人脸还原算法研究, 电子与信息学报. doi: 10.11999/JEIT170357
    [8] 邵鸿翔, 赵杭生, 孙有铭, 孙丰刚.  面向分层异构网络的资源分配:一种稳健分层博弈学习方案, 电子与信息学报. doi: 10.11999/JEIT160285
    [9] 黄开枝, 洪颖, 罗文宇, 林胜斌.  基于演化博弈机制的物理层安全协作方法, 电子与信息学报. doi: 10.11999/JEIT140309
    [10] 李添泽, 武穆清, 李沛哲, 廖文星, 马伟.  基于博弈理论的无线自组织网增强协作模型研究, 电子与信息学报. doi: 10.11999/JEIT150356
    [11] 周华, 周海军, 马建锋.  基于博弈论的入侵容忍系统安全性分析模型, 电子与信息学报. doi: 10.3724/SP.J.1146.2012.01081
    [12] 杨娟, 李颖, 张志军, 李季青.  移动Ad hoc网络容量非合作规划博弈模型的稳定性, 电子与信息学报. doi: 10.3724/SP.J.1146.2011.00420
    [13] 张玺栋, 康桂霞, 张平, 张恒.  基于博弈的大规模无线传感器网络分簇算法, 电子与信息学报. doi: 10.3724/SP.J.1146.2011.00239
    [14] 柯峰, 冯穗力, 胡洁, 庄宏成.  DF协作中继网络基于买者/卖者博弈的中继选择和功率分配策略, 电子与信息学报. doi: 10.3724/SP.J.1146.2009.01316
    [15] 冯慧斌, 张顺颐, 刘超, 刘觉夫.  基于多组博弈的新型网络流量控制模型, 电子与信息学报. doi: 10.3724/SP.J.1146.2008.01827
    [16] 李奕男, 钱志鸿, 刘影, 张旭.  基于博弈论的移动Ad hoc网络入侵检测模型, 电子与信息学报. doi: 10.3724/SP.J.1146.2010.00225
    [17] 杨宁, 田辉, 黄平, 张平.  基于博弈理论的无线传感器网络分布式节能路由算法, 电子与信息学报. doi: 10.3724/SP.J.1146.2006.01755
    [18] 张明, 王锁萍, 何涛.  基于博弈论的移动WiMAX接纳控制, 电子与信息学报. doi: 10.3724/SP.J.1146.2007.01757
    [19] 王玉峰, 王文东, 程时端.  基于Stackelberg博弈的WCDMA网络收益最大化计费的研究, 电子与信息学报.
    [20] 王烨, 李乐民, 王晟.  波长转换对抗毁多光纤网状WDM网络的性能影响, 电子与信息学报.
  • 加载中
  • 图(2) / 表ll (2)
    计量
    • 文章访问数:  784
    • HTML全文浏览量:  349
    • PDF下载量:  86
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-01-15
    • 修回日期:  2020-06-19
    • 网络出版日期:  2020-06-26
    • 刊出日期:  2020-10-13

    目录

      /

      返回文章
      返回

      官方微信,欢迎关注