高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

套球壳型非接触式交流验电装置研究

杨鹏飞 闻小龙 倪晓明 彭春荣

杨鹏飞, 闻小龙, 倪晓明, 彭春荣. 套球壳型非接触式交流验电装置研究[J]. 电子与信息学报. doi: 10.11999/JEIT200286
引用本文: 杨鹏飞, 闻小龙, 倪晓明, 彭春荣. 套球壳型非接触式交流验电装置研究[J]. 电子与信息学报. doi: 10.11999/JEIT200286
Pengfei YANG, Xiaolong WEN, Xiaoming NI, Chunrong PENG. A Novel Non-contact AC Voltage Detector Based on Concentric Double-layer Spherical Shell Structure[J]. Journal of Electronics and Information Technology. doi: 10.11999/JEIT200286
Citation: Pengfei YANG, Xiaolong WEN, Xiaoming NI, Chunrong PENG. A Novel Non-contact AC Voltage Detector Based on Concentric Double-layer Spherical Shell Structure[J]. Journal of Electronics and Information Technology. doi: 10.11999/JEIT200286

套球壳型非接触式交流验电装置研究

doi: 10.11999/JEIT200286
基金项目: 国家重点研发计划项目(2018YFF01010800)
详细信息
    作者简介:

    杨鹏飞:男,1986年生,讲师,研究方向为微传感器与微系统、电学量传感器、低频电场探测

    闻小龙:男,1988年生,讲师,研究方向为微型传感器及系统

    彭春荣:男,1979年生,研究员,研究方向为微传感器与微系统、新型电学量传感器及应用

    通讯作者:

    闻小龙 xiaolongwen@ustb.edu.cn

  • 中图分类号: TP212.9

A Novel Non-contact AC Voltage Detector Based on Concentric Double-layer Spherical Shell Structure

Funds: The National Key R&D Program of China (2018YFF01010800)
  • 摘要: 该文提出一种基于套球壳型电场探头的非接触式交流验电装置。套球壳型结构类似差分结构,可消除共模干扰噪声的影响。建立套球壳型结构的电场分布理论模型,得到外球壳表面的感应电荷密度和电场探头的灵敏度表达式。提出电场探头的等效电路模型,并设计了接口电路,最终成功研制出非接触式交流验电装置样机。测试结果表明:已研制样机的电压输出与施加电场之间有良好的线性关系,线性度达到0.66%,并且测试结果与计算结果有较好的一致性;当样机在0~45°范围内转动时,其输出的电压值仅降低了4.0%,说明验电装置的小角度旋转基本上不影响验电的准确性;越接近输电线路,样机输出的电压值的增大速度越快,阈值易于识别,说明越容易验电。
  • 图  1  套球壳型电场探头结构示意图

    图  2  套球壳型电场探头电荷分布示意图

    图  3  套球壳型电场探头等效电路模型及接口电路

    图  4  验电装置样机结构框图及实物图

    图  5  匀强电场中标定测试曲线

    图  6  与高压极板间不同夹角验电装置样机输出变化

    图  7  与模拟导线不同距离验电装置样机输出结果

    表  1  匀强电场中的标定测试数据与理论计算结果

    预设电压
    值(V)
    实际施加
    电压值(V)
    电场
    值(kV/m)
    验电器样机
    输出(mV)
    计算
    结果(mV)
    00000
    5005760.5768.08.6
    100011981.19819.417.9
    200019921.99234.029.7
    300030303.03048.245.1
    500050805.08086.075.7
    100001012010.120172.4150.8
    200002030020.300347.4302.5
    300003040030.400512.8452.9
    400004045040.450679.8602.7
    下载: 导出CSV

    表  2  与高压极板间不同夹角验电装置样机输出及相对误差计算结果

    验电装置轴向与极板
    之间的夹角(°)
    030456090
    验电装置输出(mV)88.6598.25100.65102.45104.85
    相对误差(%)15.46.34.02.20
    下载: 导出CSV
  • [1] 吴龙锋, 黄胜, 胡礼军, 等. 高压验电器的研究综述及展望[J]. 智慧电力, 2018, 46(6): 61–67, 94. doi:  10.3969/j.issn.1673-7598.2018.06.010

    WU Longfeng, HUANG Sheng, HU Lijun, et al. Summary and prospect of high voltage electroscope[J]. Smart Power, 2018, 46(6): 61–67, 94. doi:  10.3969/j.issn.1673-7598.2018.06.010
    [2] 张忠宝, 姚玉永. 35 kV高压验电器的数显改进与开发[J]. 电工电气, 2009(7): 19–22. doi:  10.3969/j.issn.1007-3175.2009.07.006

    ZHANG Zhongbao and YAO Yuyong. Digital-displayed improvement and exploitation of 35 kV high-voltage electroscope[J]. Electrotechnics Electric, 2009(7): 19–22. doi:  10.3969/j.issn.1007-3175.2009.07.006
    [3] 廖文强. 浅析电容型验电器在使用中的缺陷及对策[J]. 通信电源技术, 2013, 30(2): 79–80.

    LIAO Wenqiang. Analysis of capacitance electroscope with defects and its countermeasures[J]. Telecom Power Technology, 2013, 30(2): 79–80.
    [4] 冯锟, 阮江军, 杜晟磊, 等. 电容型高压验电器故障分析与灵敏度改进[J]. 机电元件, 2014, 34(3): 42–45. doi:  10.3969/j.issn.1000-6133.2014.03.011

    FENG Kun, RUAN Jiangjun, DU Shenglei, et al. A fault analysis and sensitivity improvement of capacitive high voltage electroscope[J]. Electromechanical Components, 2014, 34(3): 42–45. doi:  10.3969/j.issn.1000-6133.2014.03.011
    [5] KHAN T H, KABIR S M L, HUSSAIN S, et al. Design and implementation of a low cost electricity meter testing bench[C]. 2010 IEEE Symposium on Industrial Electronics and Applications, Penang, Malaysia, 2010: 34–39. doi: 10.1109/ISIEA.2010.5679499.
    [6] 李禾, 邓志祥, 王闯, 等. 电容型验电器验电盲区问题的研究[J]. 电器与能效管理技术, 2014(15): 10–13. doi:  10.16628/j.cnki.2095-8188.2014.15.004

    LI He, DENG Zhixiang, WANG Chuang, et al. Study on electrical inspection’s dead zone of capacitive detector[J]. Electrical &Energy Management Technology, 2014(15): 10–13. doi:  10.16628/j.cnki.2095-8188.2014.15.004
    [7] 高桂华. 基于场强分布的非接触式超高压验电器设计[D]. [硕士论文], 西安电子科技大学, 2014.

    GAO Guihua. The design of non-contact electroscope of ultra-high voltage based on field intensity distribution[D]. [Master dissertation], Xidian University, 2014.
    [8] ZHOU Momo and LI Chunmao. Development of non-contact electroscope[C]. 2016 IEEE International Conference on High Voltage Engineering and Application, Chendu, China, 2016: 1–6. doi: 10.1109/ICHVE.2016.7800630.
    [9] KURRER R and FESER K. The application of ultra-high-frequency partial discharge measurements to gas-insulated substations[J]. IEEE Transactions on Power Delivery, 1998, 13(3): 777–782. doi:  10.1109/61.686974
    [10] KOYAMA T, YOSHIDA T, and IDENO I. Development of a non-contact direct-voltage detector[J]. JR East Technical Review, 2012(22): 23–26.
    [11] 胡泽文, 何为, 姚德贵, 等. 高压工频电场警示仪的研究[J]. 电测与仪表, 2009, 46(9): 45–48.

    HU Zewen, HE Wei, YAO Degui, et al. Research of high-voltage power frequency electric field warning instrument[J]. Electrical Measurement &Instrumentation, 2009, 46(9): 45–48.
    [12] 谭毓苗. 非接触式高压直流验电器的研究与实现[D]. [硕士论文], 重庆理工大学, 2018.

    TAN Yumiao. Research and implementation of non-contact high voltage DC electroscope[D]. [Master dissertation], Chongqing University of Technology, 2018.
    [13] HORTON R, HALPIN M, and WALLACE K. Induced voltage in parallel transmission lines caused by electric field induction[C]. 2006 IEEE 11th International Conference on Transmission & Distribution Construction, Operation and Live-Line Maintenance, Albuquerque, USA, 2006: 1–7. doi: 10.1109/TDCLLM.2006.340720.
    [14] TSANG K M and CHAN W L. Dual capacitive sensors for non-contact AC voltage measurement[J]. Sensors and Actuators A: Physical, 2011, 167(2): 261–266. doi:  10.1016/j.sna.2011.02.019
    [15] ZHANG Xuemin, ZHANG Peng, SHI Yuqing, et al. Hardware design of non-contact voltage detector based on STM32 microcontroller[J]. IOP Conference Series: Materials Science and Engineering, 2020, 768: 062036. doi:  10.1088/1757-899X/768/6/062036
    [16] ZHU Jianjun, LEI Xinglie, SU Ziming, et al. Study of non-contact voltage detector of 1000 kV UHV AC based on MEMS electric field sensor[J]. MATEC Web of Conferences, 2018, 160: 02001. doi:  10.1051/matecconf/201816002001
    [17] 仝杰, 雷煜卿, 刘国华, 等. 微型电场传感器在工频电场测量中的应用研究[J]. 电子与信息学报, 2018, 40(12): 3036–3041. doi:  10.11999/JEIT180217

    TONG Jie, LEI Yuqing, LIU Guohua, et al. Power-frequency electric field measurement using a micromachined electric field sensor[J]. Journal of Electronics &Information Technology, 2018, 40(12): 3036–3041. doi:  10.11999/JEIT180217
    [18] ZHANG Zhanlong, LI Lin, XIE Xuemei, et al. Optimization design and research character of the passive electric field sensor[J]. IEEE Sensors Journal, 2014, 14(2): 508–513. doi:  10.1109/JSEN.2013.2284201
    [19] 陈国文. 球形二维工频电场测量系统研究[D]. [硕士论文], 华北电力大学, 2012.

    CHEN Guowen. Research on two-dimensional spherical power frequency electric field measurement system[D]. [Master dissertation], North China Electric Power University, 2012.
    [20] 毕德显. 电磁场理论[M]. 北京: 电子工业出版社, 1985.

    BI Dexian. Electromagnetic Field Theory[M]. Beijing: Publishing House of Electronics Industry, 1985.
    [21] 杨文翰, 吕英华. 用模拟电荷法求解高压输电线附近电磁场[J]. 电网技术, 2008, 32(2): 47–50, 55.

    YANG Wenhan and LÜ Yinghua. Application of emulation charge method in calculation of electromagnetic environment near to HV transmission lines[J]. Power System Technology, 2008, 32(2): 47–50, 55.
  • [1] 吴仁彪, 马晨曦, 王晓亮, 何炜琨.  风电场对航管二次监视雷达S模式的影响分析, 电子与信息学报. 2017, 39(8): 1887-1893. doi: 10.11999/JEIT161033
    [2] 闻小龙, 彭春荣, 杨鹏飞, 陈博, 夏善红.  基于MEMS技术的非接触式人体静电测量装置, 电子与信息学报. 2017, 39(8): 1835-1840. doi: 10.11999/JEIT161190
    [3] 杨鹏飞, 陈博, 闻小龙, 彭春荣, 夏善红, 郝一龙.  一种基于MEMS芯片的新型地面大气电场传感器, 电子与信息学报. 2016, 38(6): 1536-1540. doi: 10.11999/JEIT150994
    [4] 闻小龙, 任天令, 夏善红.  一种电极型MEMS电场传感器封装结构, 电子与信息学报. 2016, 38(11): 2960-2964. doi: 10.11999/JEIT160608
    [5] 谐振式微型电场传感器芯片级真空封装及测试, 电子与信息学报. 2015, 37(9): 2282-2286. doi: 10.11999/JEIT150105
    [6] 任仁, 陈贤祥, 夏善红, 吕元生.  空间电磁环境监测用双探针式星载电场探测仪, 电子与信息学报. 2012, 34(10): 2489-2493. doi: 10.3724/SP.J.1146.2012.00299
    [7] 杨鹏飞, 彭春荣, 张海岩, 刘世国, 夏善红.  SOI微型电场传感器的设计与测试, 电子与信息学报. 2011, 33(11): 2771-2774. doi: 10.3724/SP.J.1146.2010.01285
    [8] 熊幼芽, 彭春荣, 夏善红.  一种闭环自激式驱动的硅微机械电场传感器, 电子与信息学报. 2009, 31(11): 2776-2780. doi: 10.3724/SP.J.1146.2008.01527
    [9] 温凤桐, 吴文玲, 温巧燕.  优化MISTY型结构的伪随机性, 电子与信息学报. 2007, 29(5): 1173-1176. doi: 10.3724/SP.J.1146.2005.01237
    [10] 王少刚, 关鑫璞, 王党卫, 马兴义, 粟毅.  求解电场积分方程的高阶矩量法, 电子与信息学报. 2007, 29(9): 2265-2268. doi: 10.3724/SP.J.1146.2006.00628
    [11] 白强, 夏善红, 陈绍凤, 裴强, 龚超.  新型旋片式空中电场传感器及应用, 电子与信息学报. 2004, 26(4): 651-654.
    [12] 孙明, 龚沈光, 周骏, 卢新城.  基于磁通元电场叠加法的涡旋电场计算, 电子与信息学报. 2003, 25(9): 1294-1296.
    [13] 于丁, 傅德民, 刘其中, 焦永昌, 毛乃宏.  一种修正平面近场测量中探头位置误差的有效算法, 电子与信息学报. 2002, 24(3): 402-408.
    [14] 魏立梅, 谢维信.  模糊C-球壳聚类算法的研究, 电子与信息学报. 2001, 23(1): 37-44.
    [15] 张守融, 王卫延.  电场积分方程中电荷项计算的改进, 电子与信息学报. 1996, 18(3): 327-331.
    [16] 丁扣宝, 张秀淼.  深能级中心的电场增强载流子产生效应, 电子与信息学报. 1994, 16(1): 61-66.
    [17] 蔡小丁.  横电磁波传输室电场纵向不均匀性分析, 电子与信息学报. 1991, 13(2): 202-206.
    [18] 李明阳, 李德明, 董雷, 高杰.  用电荷密度法计算静电场的程序和误差分析, 电子与信息学报. 1986, 8(6): 469-476.
    [19] 江钧基.  均匀静电场偏转系统的几何象差的计算, 电子与信息学报. 1986, 8(5): 359-366.
    [20] 海宇涵, 周忠毅.  非晶硅光电导响应的动力学研究(Ⅰ)强电场下的光电导响应, 电子与信息学报. 1982, 4(4): 248-257.
  • 加载中
  • 图(7) / 表ll (2)
    计量
    • 文章访问数:  15
    • HTML全文浏览量:  3
    • PDF下载量:  5
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-04-21
    • 修回日期:  2020-11-12
    • 网络出版日期:  2020-11-20

    目录

      /

      返回文章
      返回

      官方微信,欢迎关注