高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非平稳信道下的鲁棒数据链优化设计综述——带限环境下的混沌传输系统

苗美媛 宋丹 徐位凯 湛佳 王琳

苗美媛, 宋丹, 徐位凯, 湛佳, 王琳. 非平稳信道下的鲁棒数据链优化设计综述——带限环境下的混沌传输系统[J]. 电子与信息学报. doi: 10.11999/JEIT200311
引用本文: 苗美媛, 宋丹, 徐位凯, 湛佳, 王琳. 非平稳信道下的鲁棒数据链优化设计综述——带限环境下的混沌传输系统[J]. 电子与信息学报. doi: 10.11999/JEIT200311
Meiyuan MIAO, Dan SONG, Weikai XU, Jia ZHAN, Lin WANG. Survey of Optimization Design for Robust Data Link over Non-stationary Channels-chaotic Transmission Systems over Band-limited Environments[J]. Journal of Electronics and Information Technology. doi: 10.11999/JEIT200311
Citation: Meiyuan MIAO, Dan SONG, Weikai XU, Jia ZHAN, Lin WANG. Survey of Optimization Design for Robust Data Link over Non-stationary Channels-chaotic Transmission Systems over Band-limited Environments[J]. Journal of Electronics and Information Technology. doi: 10.11999/JEIT200311

非平稳信道下的鲁棒数据链优化设计综述——带限环境下的混沌传输系统

doi: 10.11999/JEIT200311
基金项目: 国家自然科学基金(61671395, 61871337)
详细信息
    作者简介:

    苗美媛:女,1991年生,博士生,研究方向为混沌调制,带限传输系统

    宋丹:女,1994年生,博士生,研究方向为联合信源信道编码

    徐位凯:男,1976年生,副教授,研究方向为超宽带与混沌通信

    湛佳:女,1991年生,博士生,研究方向为联合信源信道编码

    王琳:男,1963年生,教授,博士生导师,研究方向为信息论与编码,数字通信理论

    通讯作者:

    王琳 wanglin@xmu.edu.cn

  • 中图分类号: TN911.3

Survey of Optimization Design for Robust Data Link over Non-stationary Channels-chaotic Transmission Systems over Band-limited Environments

Funds: The National Natural Science Foundation of China (61671395, 61871337)
  • 摘要: 近年来,以物联网(IoT)为基础的6G的相关技术研究引起了研究单位、高校和工业界的广泛关注,其中还有一些重要的问题亟待解决。如何以较低的成本保证带限非平稳环境下数据传输的鲁棒性是一个非常重要的问题。该文介绍了一种低复杂度、低功耗的调制解调传输技术,即差分混沌键控(DCSK)调制。该文将分别描述和分析该系统在标准和非标准传输环境下的特性、优势及其改进方法。同时将提供一些基于多元DCSK(MDCSK)的新型编码调制方案来提高系统在带限环境下的传输质量,这将有助于在低功耗、低成本的网络上,特别是在非平稳信道上提升系统的鲁棒性。结果表明这些优化工作显著地改善了系统性能。之后针对非平稳信道特性系统参数的优化与自适应传输机制将成为未来研究的热点。
  • 图  1  MDCSK的系统框图

    图  2  MDCSK和MPSK-DCSK在扩频因子β=60,M=2, 4, 8, 16, 32的误码率性能曲线

    图  3  一般化MR-8元DCSK星座及其灰编码映射与判决边界

    图  4  AWGN信道下,2/4/8/16-DCSK系统的BER性能,扩频因子为128,相位向量为${{\theta}} = \left[ {{{{\pi}} / 5}\begin{array}{*{20}{c}} ,&{{{{\pi}} / {25}}} \end{array}\begin{array}{*{20}{c}} ,&{{{{\pi}} / {40}}} \end{array}} \right]$

    图  5  方形星座图与判决边界

    图  6   

    图  7   

    图  8  码率1/2的ARJA-16-DC-BICM与方形的4-DCSK的误码率性能比较

    图  9   

    图  10  多径PLC信道下BER性能比较

    图  11   

    图  12  时变UWA信道

    图  13  不同UWA信道下MC-CS-DCSK,OFDM-CS-DCSK和MM-DCSK的误码率性能比较。

    表  1  EXIT码型搜索算法流程

     初始化:
     设定 预先设定信息比特GPs g1,g2,···,gm,
     设定 Gr={所有可能的gr},SNR, k, $\varGamma = \{ \phi \}$
     程序:
     (1) Gr选择一个新的gr
     (2)当SNR=$\gamma $时,计算选择的GPs的EXIT曲线
     (3) 如果通道打开,则令SNR=SNR-k,并且执行第(2)步;如果通道关闭,则在$\Gamma $中保存$\gamma + k/2$作为当前选定的GPs的预测阈值,并执行
       第(4)步
     (4) 如果在GPs中有未测试的元素,则返回第(2)步,否则执行第(5)步
     (5) 搜索最小值并保存到$\varGamma$中,其对应的GPs这是我们要寻找的好的码型结构
    下载: 导出CSV

    表  2  多径PLC信道参数

    路径编号信道增益延时(τ(Tc))
    10.3645–0.4860i0
    20.3037+0.4252i2
    30.1822–0.3645i5
    40.3645–0.2430i1
    下载: 导出CSV
  • [1] DEDIEU H, KENNEDY M P, and HASLER M. Chaos shift keying: Modulation and demodulation of a chaotic carrier using self-synchronizing Chua’s circuits[J]. IEEE Transactions on Circuits and Systems Ⅱ: Analog and Digital Signal Processing, 1993, 40(10): 634–642. doi:  10.1109/82.246164
    [2] KOLUMBAN G, VIZVARI B, SCHWARZ W, et al. Differential chaos shift keying: A robust coding for chaos communication[C]. The 4th International Workshop on Nonlinear Dynamics of Electronic Systems, Seville, Spain: NDES, 1996: 87–92.
    [3] KENNEDY M P, KOLUMBAN G, KIS G, et al. Performance evaluation of FM-DCSK modulation in multipath environments[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2000, 47(12): 1702–1711. doi:  10.1109/81.899922
    [4] WANG Lin, ZHANG Chaoxian, and CHEN Guanrong. Performance of an SIMO FM-DCSK communication system[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2008, 55(5): 457–461. doi:  10.1109/TCSⅡ.2007.914895
    [5] KADDOUM G, SOUJERI E, ARCILA C, et al. I-DCSK: An improved noncoherent communication system architecture[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2015, 62(9): 901–905. doi:  10.1109/TCSⅡ.2015.2435831
    [6] YANG Hua, JIANG Guoping, and DUAN Junyi. Phase-separated DCSK: A simple delay-component-free solution for chaotic communications[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2014, 61(12): 967–971. doi:  10.1109/TCSⅡ.2014.2356914
    [7] KADDOUM G and SOUJERI E. NR-DCSK: A noise reduction differential chaos shift keying system[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2016, 63(7): 648–652. doi:  10.1109/TCSⅡ.2016.2532041
    [8] KADDOUM G, RICHARDSON F D, and GAGNON F. Design and analysis of a multi-carrier differential chaos shift keying communication system[J]. IEEE Transactions on Communications, 2013, 61(8): 3281–3291. doi:  10.1109/TCOMM.2013.071013.130225
    [9] HUANG Tingting, WANG Lin, XU Weikai, et al. A multi-carrier M-Ary differential chaos shift keying system with low PAPR[J]. IEEE Access, 2017, 5: 18793–18803. doi:  10.1109/ACCESS.2017.2752238
    [10] CHENG Guixian, WANG Lin, CHEN Qiwang, et al. Design and performance analysis of generalised carrier index M-ary differential chaos shift keying modulation[J]. IET Communications, 2018, 12(11): 1324–1331. doi:  10.1049/iet-com.2017.0800
    [11] YANG Hua, JIANG Guoping, TANG W K S, et al. Multi-carrier differential chaos shift keying system with subcarriers allocation for noise reduction[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2018, 65(11): 1733–1737. doi:  10.1109/TCSⅡ.2017.2752754
    [12] LU Yazhen, MIAO Meiyuan, WANG Lin, et al. A multilevel code-shifted differential chaos shift keying system with reference diversity[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2020. doi:  10.1109/TCSⅡ.2020.2964883
    [13] KADDOUM G and GAGNON F. Design of a high-data-rate differential chaos-shift keying system[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2012, 59(7): 448–452. doi:  10.1109/TCSⅡ.2012.2198982
    [14] CHEN Pingping, WANG Lin, and CHEN Guanrong. DDCSK-Walsh coding: A reliable chaotic modulation-based transmission technique[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2012, 59(2): 128–132. doi:  10.1109/TCSⅡ.2011.2180109
    [15] CHEN Pingping, SHI Long, FANG Yi, et al. A coded DCSK modulation system over Rayleigh fading channels[J]. IEEE Transactions on Communications, 2018, 66(9): 3930–3942. doi:  10.1109/TCOMM.2018.2827032
    [16] HUANG Tingting, WANG Lin, XU Weikai, et al. Multilevel code-shifted differential-chaos-shift-keying system[J]. IET Communications, 2016, 10(10): 1189–1195. doi:  10.1049/iet-com.2015.1109
    [17] MIAO Meiyuan, WANG Lin, KATZ M, et al. Hybrid modulation scheme combining PPM with differential chaos shift keying modulation[J]. IEEE Wireless Communications Letters, 2019, 8(2): 430–433. doi:  10.1109/LWC.2018.2871137
    [18] XU Weikai and WANG Lin. CIM-DCSK: A differential chaos shift keying scheme with code-index modulation[C]. 2016 16th International Symposium on Communications and Information Technologies, Qingdao, China, 2016: 26–28. doi: 10.1109/ISCIT.2016.7751600.
    [19] TAN Yunsheng, XU Weikai, HUANG Tingting, et al. A multilevel code shifted differential chaos shift keying scheme with code index modulation[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2018, 65(11): 1743–1747. doi:  10.1109/TCSⅡ.2017.2764916
    [20] XU Weikai, HUANG Tingting, and WANG Lin. Code-shifted differential chaos shift keying with code index modulation for high data rate transmission[J]. IEEE Transactions on Communications, 2017, 65(10): 4285–4294. doi:  10.1109/TCOMM.2017.2725261
    [21] SOUJERI E, KADDOUM G, AU M, et al. Frequency index modulation for low complexity low energy communication networks[J]. IEEE Access, 2017, 5: 23276–23287. doi:  10.1109/ACCESS.2017.2713721
    [22] HERCEG M, VRANJEŠ D, KADDOUM G, et al. Commutation code index DCSK modulation technique for high-data-rate communication systems[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2018, 65(12): 1954–1958. doi:  10.1109/TCSⅡ.2018.2817930
    [23] YANG Hua, TANG Wallace K S, CHEN Guanrong, et al. System design and performance analysis of orthogonal multi-level differential chaos shift keying modulation scheme[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2016, 63(1): 146–156. doi:  10.1109/TCSI.2015.2510622
    [24] GALIAS Z and MAGGIO G M. Quadrature chaos-shift keying: Theory and performance analysis[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2001, 48(12): 1510–1519. doi:  10.1109/TCSI.2001.972858
    [25] WANG Shiliang and WANG Xiaodong. M-DCSK-based chaotic communications in MIMO multipath channels with no channel state information[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2010, 57(12): 1001–1005. doi:  10.1109/TCSⅡ.2010.2083091
    [26] WANG Lin, CAI Guofa, and CHEN G R. Design and performance analysis of a new multiresolution M-Ary differential chaos shift keying communication system[J]. IEEE Transactions on Wireless Communications, 2015, 14(9): 5197–5208. doi:  10.1109/TWC.2015.2434820
    [27] CAI Guofa, FANG Yi, HAN Guojun, et al. A square-constellation-based M-Ary DCSK communication system[J]. IEEE Access, 2016, 4: 6295–6303. doi:  10.1109/ACCESS.2016.2612224
    [28] CAI Guofa, FANG Yi, and HAN Guojun. Design of an adaptive multiresolution M-Ary DCSK system[J]. IEEE Communications Letters, 2017, 21(1): 60–63. doi:  10.1109/LCOMM.2016.2614682
    [29] CAI Guofa, FANG Yi, HAN Guojun, et al. A new hierarchical M-Ary DCSK communication system: Design and Analysis[J]. IEEE Access, 2017, 5: 17414–17424. doi:  10.1109/ACCESS.2017.2740973
    [30] GHOSH M. Analysis of the effect of impulse noise on multicarrier and single carrier QAM systems[J]. IEEE Transactions on Communications, 1996, 44(2): 145–147. doi:  10.1109/26.486604
    [31] HE Yanchun WANG Lin, ZHOU Chenglong, et al. A novel trellis-coded differential chaotic modulation system[C]. 2017 Wireless Telecommunications Symposium, Chicago, USA, 2017: 1–6. doi: 10.1109/WTS.2017.7943522.
    [32] ZHOU Chenglong, HU Wei, WANG Lin, et al. Turbo trellis-coded differential chaotic modulation[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2018, 65(2): 191–195. doi:  10.1109/TCSⅡ.2017.2709347
    [33] ZHOU Chenglong, HU Wei, WANG Lin, et al. IQ-interleaved turbo trellis-coded differential chaotic modulation scheme[C]. The 23rd Asia-Pacific Conference on Communications, Perth, Australia, 2017: 1–6. doi: 10.23919/APCC.2017.8304013.
    [34] ZHANG Bangquan, WANG Lin, ZHOU Chenglong, et al. Serial concatenated trellis-coded differential chaotic modulation[C]. The 29th IEEE Annual International Symposium on Personal, Indoor and Mobile Radio Communications, Bologna, Italy, 2018: 1–5. doi: 10.1109/PIMRC.2018.8580688.
    [35] ZHAN Jia WANG Lin, KATZ M, et al. A differential chaotic bit-interleaved coded modulation system over multipath Rayleigh channels[J]. IEEE Transactions on Communications, 2017, 65(12): 5257–5265. doi:  10.1109/TCOMM.2017.2719030
    [36] DIVSALAR D and JONES C. Protograph based low error floor LDPC coded modulation[C]. 2005 IEEE Military Communications Conference, Atlantic City, USA, 2005: 378–385. doi: 10.1109/MILCOM.2005.1605713.
    [37] ABBASFAR A, DIVSALAR D, and YAO K. Accumulate-repeat-accumulate codes[J]. IEEE Transactions on Communications, 2007, 55(4): 692–702. doi:  10.1109/TCOMM.2007.894109
    [38] 洪少华, 王琳. 基于原模图LDPC码的分布式联合信源信道编码[J]. 电子与信息学报, 2017, 39(11): 2594–2599. doi:  10.11999/JEIT170113

    HONG Shaohua and WANG Lin. Protograph LDPC based distributed joint source channel coding[J]. Journal of Electronics &Information Technology, 2017, 39(11): 2594–2599. doi:  10.11999/JEIT170113
    [39] 陶雄飞, 王跃东, 柳盼. 基于变量节点更新的LDPC码加权比特翻转译码算法[J]. 电子与信息学报, 2016, 38(3): 688–693. doi:  10.11999/JEIT150720

    TAO Xiongfei, WANG Yuedong, and LIU Pan. Weighted Bit-flipping Decoding Algorithm for LDPC Codes Based on Updating of Variable Nodes[J]. Journal of Electronics &Information Technology, 2016, 38(3): 688–693. doi:  10.11999/JEIT150720
    [40] KADDOUM G and TADAYON N. Differential chaos shift keying: A robust modulation scheme for power-line communications[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2017, 64(1): 31–35. doi:  10.1109/TCSⅡ.2016.2546901
    [41] ZHENG Mingyang, HUANG Tingting, WANG Lin, et al. Performance analysis of M-ary DCSK system over narrow band power-line communications[C]. The 23rd Asia-Pacific Conference on Communications, Perth, Australia, 2017: 1–6. doi: 10.23919/APCC.2017.8304008.
    [42] CHENG LIN and FERREIRA H C. Time-diversity permutation coding scheme for narrow-band power-line channels[C]. 2017 IEEE International Symposium on Power Line Communications and its Applications, Beijing, China, 2012: 378–385. doi: 10.1109/ISPLC.2012.6201335.
    [43] ZHANG Yuyang, WANG Lin, CHEN Qiwang, et al. Optimization of constellation-based DC-BICM systems over power line channels[C]. The 29th IEEE Annual International Symposium on Personal, Indoor and Mobile Radio Communications, Bologna, Italy, 2018: 576–577. doi: 10.1109/PIMRC.2018.8580673.
    [44] CHEN Qiwang, WANG Lin, LYU Yibo, et al. Designing protograph-based LDPC Codes for iterative receivers on M-ary DCSK Systems[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2018, 65(4): 466–470. doi:  10.1109/TCSⅡ.2017.2741062
    [45] 杨帆, 贾辉, 刘宝树, 等. α稳定脉冲噪声下宽带电力线通信系统性能分析[J]. 电子与信息学报, 2019, 41(6): 1374–1380. doi:  10.11999/JEIT180261

    YANG Fan, JIA Hui, LIU Baoshu, et al. Performance analysis of broadband power-line communications systems under the alpha-stable impulsive noise[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1374–1380. doi:  10.11999/JEIT180261
    [46] 罗忠涛, 詹燕梅, 郭人铭, 等. 脉冲噪声中基于指数函数的可变拖尾非线性变换设计[J]. 电子与信息学报, 2020, 42(4): 932–940. doi:  10.11999/JEIT190401

    LUO Zhongtao, ZHAN Yanmei, GUO Renming, et al. Variable tailing nonlinear transformation design based on exponential function in impulsive noise[J]. Journal of Electronics &Information Technology, 2020, 42(4): 932–940. doi:  10.11999/JEIT190401
    [47] CHEN Menglei, XU Weikai, WANG Deiqing, et al. Multi-carrier chaotic communication scheme for underwater acoustic communications[J]. IET Communications, 2019, 13(14): 2097–2015. doi:  10.1049/iet-com.2018.5524
    [48] QU Fengzhou, QIN Xiangzhao, YANG Liuqing, et al. Spread-spectrum method using multiple sequences for underwater acoustic communications[J]. IEEE Journal of Oceanic Engineering, 2018, 43(4): 1215–1226. doi:  10.1109/JOE.2017.2750298
  • [1] 万显荣, 刘玉琪, 程丰, 易建新.  基于信道分段平滑的外辐射源雷达非平稳杂波抑制方法, 电子与信息学报. 2020, 42(1): 132-139. doi: 10.11999/JEIT190754
    [2] 贺利芳, 吴雪霜, 张天骐.  正交多用户短参考差分混沌移位键控通信系统性能分析, 电子与信息学报. 2020, 42(10): 2445-2453. doi: 10.11999/JEIT190778
    [3] 贺利芳, 陈俊, 张天骐.  短参考多用户差分混沌移位键控通信系统性能分析, 电子与信息学报. 2020, 42(8): 1902-1909. doi: 10.11999/JEIT190117
    [4] 张琳, 陈炳均, 吴志强.  基于矩阵低秩估计的可靠多载波差分混沌键控接收机, 电子与信息学报. 2020, 42(0): 1-8. doi: 10.11999/JEIT200349
    [5] 贺利芳, 吴雪霜, 张天骐.  正交多载波降噪差分混沌键控通信系统, 电子与信息学报. 2020, 41(0): 1-9. doi: 10.11999/JEIT200068
    [6] 路新华, MANCHÓNCarles Navarro, 王忠勇, 张传宗.  大规模MIMO系统上行链路时间-空间结构信道估计算法, 电子与信息学报. 2020, 42(2): 519-525. doi: 10.11999/JEIT180676
    [7] 杨洋, 方勇, 单博炜.  非平稳信道下LDPC码低复杂度滑窗置信传播联合信道估计与译码算法, 电子与信息学报. 2020, 42(0): 1-9. doi: 10.11999/JEIT200406
    [8] 张薇, 段京京, 王岩松.  一种基于随机散射簇的非平稳3D空间信道模型, 电子与信息学报. 2018, 40(10): 2301-2308. doi: 10.11999/JEIT170929
    [9] 党小宇, 刘兆彤, 李宝龙, 李强.  物理层网络编码中连续相位调制信号的非相干多符号检测, 电子与信息学报. 2016, 38(4): 877-884. doi: 10.11999/JEIT150671
    [10] 沙楠, 高媛媛, 益晓新, 龙彦汕.  基于连续相位频移键控调制的物理层网络编码检测及性能分析, 电子与信息学报. 2014, 36(6): 1454-1459. doi: 10.3724/SP.J.1146.2013.01201
    [11] 于洋, 谭学治.  基于信道分类和自适应调制编码的认知无线电决策引擎, 电子与信息学报. 2014, 36(2): 371-376. doi: 10.3724/SP.J.1146.2013.00653
    [12] 王红星, 刘锡国, 赵志勇, 刘传辉, 陈昭男.  基于三值编码的非正弦时域正交调制方法, 电子与信息学报. 2011, 33(8): 2003-2007. doi: 10.3724/SP.J.1146.2010.01417
    [13] 林永照, 吴成柯, 刘薇.  LT码和q-LDPC码级联方案在深空通信中的应用, 电子与信息学报. 2010, 32(8): 1898-1903. doi: 10.3724/SP.J.1146.2009.01105
    [14] 李颖, 王欣, 魏急波.  连续衰落信道下适用于酉空时调制的最大似然多符号差分检测算法, 电子与信息学报. 2008, 30(4): 843-847. doi: 10.3724/SP.J.1146.2006.00925
    [15] 芮华, 徐大专, 张小飞.  基于迭代的置信传播编码调制在瑞利衰落信道中的性能, 电子与信息学报. 2005, 27(2): 214-217.
    [16] 曹士坷, 张力军.  基于调制引入循环平稳的单信道盲辨识和盲抗干扰均衡, 电子与信息学报. 2005, 27(2): 210-213.
    [17] 孙锦华, 李建东, 金力军.  连续相位调制的非相干减少状态差分序列检测算法, 电子与信息学报. 2005, 27(8): 1338-1341.
    [18] 吕淑娟, 卫国, 朱近康, 杜政.  一种新的快衰落信道下的差分Unitary时空编码调制方法, 电子与信息学报. 2005, 27(10): 1620-1624.
    [19] 白智全, 袁东风, 李长春, 徐文进.  衰落信道下Turbo网格编码调制在图像传输中的性能研究, 电子与信息学报. 2004, 26(6): 995-999.
    [20] 束锋, 吴乐南.  基于正交频分复用的频域差分幅度相位调制, 电子与信息学报. 2002, 24(4): 467-472.
  • 加载中
  • 图(13) / 表ll (2)
    计量
    • 文章访问数:  175
    • HTML全文浏览量:  96
    • PDF下载量:  12
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-04-27
    • 修回日期:  2020-07-08
    • 网络出版日期:  2020-07-22

    目录

      /

      返回文章
      返回

      官方微信,欢迎关注