高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于子空间投影的复杂水下环境运动小目标检测前跟踪方法

陈华杰 白浩然

陈华杰, 白浩然. 基于子空间投影的复杂水下环境运动小目标检测前跟踪方法[J]. 电子与信息学报, 2021, 43(3): 826-833. doi: 10.11999/JEIT200446
引用本文: 陈华杰, 白浩然. 基于子空间投影的复杂水下环境运动小目标检测前跟踪方法[J]. 电子与信息学报, 2021, 43(3): 826-833. doi: 10.11999/JEIT200446
Huajie CHEN, Haoran BAI. Subspace Projection Based Track-Before-Detect Scheme for Small Moving Target in Complex Underwater Environment[J]. Journal of Electronics and Information Technology, 2021, 43(3): 826-833. doi: 10.11999/JEIT200446
Citation: Huajie CHEN, Haoran BAI. Subspace Projection Based Track-Before-Detect Scheme for Small Moving Target in Complex Underwater Environment[J]. Journal of Electronics and Information Technology, 2021, 43(3): 826-833. doi: 10.11999/JEIT200446

基于子空间投影的复杂水下环境运动小目标检测前跟踪方法

doi: 10.11999/JEIT200446
基金项目: 国防科技重点实验室基金(6142804180407);国防基础科研项目(JCKY2018415C004)
详细信息
    作者简介:

    陈华杰:男,1978年生,教授,硕士生导师,研究方向为图像处理、目标检测、机器学习

    白浩然:男,1996年生,硕士生,研究方向为图像处理、目标检测

    通讯作者:

    陈华杰 chj247@hdu.edu.cn

  • 中图分类号: TP751

Subspace Projection Based Track-Before-Detect Scheme for Small Moving Target in Complex Underwater Environment

Funds: The National Defense Science and Technology Key Laboratory Foundation of China (6142804180407), The National Defense Basic Scientific Research Program of China (JCKY2018415C004)
  • 摘要: 针对复杂水下环境运动小目标检测中存在的目标信号强度弱、信杂比低等问题,该文提出基于子空间投影的检测前跟踪(TBD)算法:对原始图像数据截取序列片段,将3维时空片段中的短时运动航迹投影到2维子空间平面;利用2维投影图中平面航迹的形态特征进行初步筛选,提取目标的有效运动区域;将2维平面中的目标短时航迹在局部区域重建3维时序,在3维航迹回溯过程中利用目标运动特征再次筛选目标短时航迹。通过上述分级检测机制,可实现快速高精度的目标短时航迹检测。结合前景检测以及基于层次凝聚聚类(HAC)的长时航迹检测算法,构建了针对运动小目标的完整检测前跟踪方法。最后使用实测声呐图像数据验证了算法的检测精度和检测速度。
  • 图  1  基于子空间投影的快速TBD检测系统方案

    图  2  前景检测数据及其结果

    图  3  子空间投影TBD流程图

    图  4  子空间投影示意图

    图  5  子空间投影及形态学处理

    图  6  联通区域检测及航迹3维坐标显示

    图  7  目标原始轨迹

    图  8  基于DP-TBD的快速检测系统对数据序列的检测结果

    图  9  基于子空间投影TBD的快速检测系统对数据序列的检测结果

    表  1  基于DP-TBD的检测结果

    数据实际目标数量检测目标数量跟踪精度(%)虚警率(%)
    数据序列12120.060
    数据序列21342.2231.57
    下载: 导出CSV

    表  2  基于子空间投影TBD的检测结果

    数据实际目标数量检测目标数量跟踪精度(%)虚警率(%)
    数据序列12495.840
    数据序列21288.150
    下载: 导出CSV

    表  3  处理单帧数据的平均用时(帧/s)

    数据基于子空间投影TBD基于DP-TBD
    数据序列10.0100.025
    数据序列20.0300.126
    下载: 导出CSV
  • 钟雷, 李勇, 牟之英, 等. 未知强杂波下基于DP-TBD的雷达弱目标检测[J]. 系统工程与电子技术, 2019, 41(1): 43–49. doi: 10.3969/j.issn.1001-506X.2019.01.07

    ZHONG Lei, LI Yong, MOU Zhiying, et al. Detection method for weak target under unknown strong clutter based on DP-TBD[J]. Systems Engineering and Electronics, 2019, 41(1): 43–49. doi: 10.3969/j.issn.1001-506X.2019.01.07
    WANG Hui, YI Jianxin, and WAN Xianrong. Greedy algorithm-based track-before-detect in radar systems[J]. IEEE Sensors Journal, 2018, 18(17): 7158–7165. doi: 10.1109/JSEN.2018.2853188
    BARNIV Y. Dynamic programming solution for detecting dim moving targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 1985, AES-21(1): 144–156. doi: 10.1109/TAES.1985.310548
    BARNIV Y, and KELLA O. Dynamic programming solution for detecting dim moving targets part II: Analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 1987, AES-23(6): 776–788. doi: 10.1109/TAES.1987.310914
    CARLSON B D, EVANS E D, and WILSON S L. Search radar detection and track with the Hough transform. I. system concept[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(1): 102–108. doi: 10.1109/7.250410
    HART P E. How the Hough transform was invented [DSP History][J]. IEEE Signal Processing Magazine, 2009, 26(6): 18–22. doi: 10.1109/MSP.2009.934181
    GUSTAFSSON F, GUNNARSSON F, BERGMAN N, et al. Particle filters for positioning, navigation, and tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 425–437. doi: 10.1109/78.978396
    ORTON M and FITZGERALD W. A Bayesian approach to tracking multiple targets using sensor arrays and particle filters[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 216–223. doi: 10.1109/78.978377
    YAN Bo, XU Luping, LI Muqing, et al. Track-before-detect algorithm based on dynamic programming for multi-extended-targets detection[J]. IET Signal Processing, 2017, 11(6): 674–686. doi: 10.1049/iet-spr.2016.0582
    GUO Qiang, LI Zhenwu, SONG Wenming, et al. Parallel computing based dynamic programming algorithm of track-before-detect[J]. Symmetry, 2019, 11(1): 29. doi: 10.3390/sym11010029
    GAO Jie, DU Jinsong, and WANG Wei. Radar detection of fluctuating targets under heavy- tailed clutter using Track-before-detect[J]. Sensors, 2018, 18(7): 2241. doi: 10.3390/s18072241
    LI Yuansheng, WEI Ping, GAO Lin, et al. Micro-doppler aided track-before-detect for UAV detection[C]. 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 9086–9089.
    CAO Chenghu, ZHAO Yongbo, PANG Xiaojiao, et al. Sequential Monte Carlo Cardinalized probability hypothesized density filter based on Track-Before-Detect for fluctuating targets in heavy-tailed clutter[J]. Signal Processing, 2020, 169: 107367. doi: 10.1016/j.sigpro.2019.107367
    HAN Yulan and HAN Chongzhao. Two measurement set partitioning algorithms for the extended target probability hypothesis density filter[J]. Sensors, 2019, 19(12): 2665. doi: 10.3390/s19122665
    陈一梅. 基于随机有限集的杂波估计与多扩展目标跟踪问题研究[D]. [硕士论文], 杭州电子科技大学, 2019.

    CHEN Yimei. Clutter estimation and multiple extended target tracking based on random finite set[D]. [Master dissertation], Hangzhou Dianzi University, 2019.
    WANG Jinghe, YI Wei, KIRUBARAJAN T, et al. An efficient recursive multiframe track-before-detect algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 190–204. doi: 10.1109/TAES.2017.2741898
    熊伟, 顾祥岐, 徐从安, 等. 多编队目标先后出现时的无先验信息跟踪方法[J]. 电子与信息学报, 2020, 42(7): 1619–1626. doi: 10.11999/JEIT190508

    XIONG Wei, GU Xiangqi, XU Cong’an, et al. Tracking method without prior information when multi-group targets appear successively[J]. Journal of Electronics &Information Technology, 2020, 42(7): 1619–1626. doi: 10.11999/JEIT190508
    QIN Xiaoyu, TING Kaiming, ZHU Ye, et al. Nearest-neighbour-induced isolation similarity and its impact on density-based clustering[C]. The 33rd AAAI Conference on Artificial Intelligence, Honolulu, USA, 2019: 4755–4762.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  167
  • HTML全文浏览量:  51
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-04
  • 修回日期:  2020-11-26
  • 网络出版日期:  2020-11-27
  • 刊出日期:  2021-03-22

目录

    /

    返回文章
    返回

    官方微信,欢迎关注