高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于差和共阵的新型高自由度互质阵

陈禹蒲 马晓川 李璇

陈禹蒲, 马晓川, 李璇. 基于差和共阵的新型高自由度互质阵[J]. 电子与信息学报, 2021, 43(3): 717-726. doi: 10.11999/JEIT200505
引用本文: 陈禹蒲, 马晓川, 李璇. 基于差和共阵的新型高自由度互质阵[J]. 电子与信息学报, 2021, 43(3): 717-726. doi: 10.11999/JEIT200505
Yupu CHEN, Xiaochuan MA, Xuan LI. A New Coprime Array with High Degree of Freedom Based on the Difference and Sum Co-array[J]. Journal of Electronics and Information Technology, 2021, 43(3): 717-726. doi: 10.11999/JEIT200505
Citation: Yupu CHEN, Xiaochuan MA, Xuan LI. A New Coprime Array with High Degree of Freedom Based on the Difference and Sum Co-array[J]. Journal of Electronics and Information Technology, 2021, 43(3): 717-726. doi: 10.11999/JEIT200505

基于差和共阵的新型高自由度互质阵

doi: 10.11999/JEIT200505
详细信息
    作者简介:

    陈禹蒲:女,1995年生,博士生,研究方向为阵列信号处理

    马晓川:男,1969年生,研究员,博士生导师,研究方向为阵列信号处理、水声信号处理

    李璇:女,1983年生,副研究员,硕士生导师,研究方向为阵列信号处理、水声信号处理

    通讯作者:

    马晓川 maxc@mail.ioa.ac.cn

  • 中图分类号: TN911.7

A New Coprime Array with High Degree of Freedom Based on the Difference and Sum Co-array

  • 摘要: 针对均匀线列阵自由度(DOF)受限于阵元数的问题,该文提出一种基于差和共阵的新型互质阵,称为放置互质阵(DCA),其借助由接收信号的时域和空域信息组合成的共轭增广矩阵得到等价的差和共阵来进行波达方向(DOA)估计。DCA将广义互质阵放置在与原点处单阵元相隔一定距离的位置,实现了和共阵与差共阵的阵元位置互补,从而最大限度上利用和共阵带来的自由度增幅。该文给出了DCA阵元位置和放置距离的闭式表达,随后分别对DCA的差共阵及和共阵的连续阵元及孔洞位置进行了理论分析,同时给出了两者间的关系,说明了DCA的高自由度特性。多个仿真实验验证了所提阵型DOA估计的有效性。
  • 图  1  放置互质阵

    图  2  放置互质阵$(M,N,p) = (6,5,2)$

    图  3  各阵型自由度随阵元总数的变化

    图  4  同阵元数下各阵型的RMSE变化曲线

    图  5  同孔径下各阵型的RMSE变化曲线

    表  1  两种阵型的最优设计及最大自由度

    阵型表达式子阵阵元数最优选择最大自由度
    DCA$P = M + N$
    ${\rm{DOF}} = 2MN - N + 1$
    $P$为偶,$P/2$为偶:$M = P/2 + 1,N = P/2 - 1$$({P^2} - P)/2$
    $P$为偶,$P/2$为奇:$M = P/2 + 2,N = P/2 - 2$$({P^2} - P - 10)/2$
    $P$为奇:$M = (P + 1)/2,N = (P - 1)/2$$({P^2} - P + 2)/2$
    CA(VCAM)$P = M + N - 1$
    ${\rm{DOF}} = MN + M + N - 1$
    $P$为偶:$M = (P + 2)/2,N = P/2$$({P^2} + 6P)/4$
    $P$为奇,$(P + 1)/2$为偶:$M = (P + 1)/2 + 1,N = (P + 1)/2 - 1$$({P^2} + 6P - 3)/4$
    $P$为奇,$(P + 1)/2$为奇:$M = (P + 1)/2 + 2,N = (P + 1)/2 - 2$$({P^2} + 6P - 15)/4$
    下载: 导出CSV

    表  2  各阵型同孔径下的阵型配置

    阵型阵元总数子阵阵元数孔径自由度
    CACIS27$(M,N) = (15,13)$182182
    CA(VCAM)27$(M,N) = (15,13)$182222
    CADiS26$(M,N) = (14,13)$182182
    NA26$({N_1},{N_2}) = (13,13)$181181
    DCA23$(M,N) = (12,11)$182254
    下载: 导出CSV
  • YANG Jie, YANG Yixin, LEI Bo, et al. Nonuniform linear array DOA estimation using EM criterion[J]. Digital Signal Processing, 2019, 86: 36–41. doi: 10.1016/j.dsp.2018.12.010
    QIN Guodong, AMIN M G, and ZHANG Y D. DOA estimation exploiting sparse array motions[J]. IEEE Transactions on Signal Processing, 2019, 67(11): 3013–3027. doi: 10.1109/TSP.2019.2911261
    鄢社锋. 优化阵列信号处理(上册)[M]. 北京: 科学出版社, 2018: 1–31.

    YAN Shefeng. Optimal Array Signual Pocssing: Beamformer Design Theory and Methods[M]. Beijing: Science Press, 2018: 1–31.
    HOCTOR R T and KASSAM S A. The unifying role of the coarray in aperture synthesis for coherent and incoherent imaging[J]. Proceedings of the IEEE, 1990, 78(4): 735–752. doi: 10.1109/5.54811
    MOFFET A T. Minimum-redundancy linear arrays[J]. IEEE Transactions on Antennas and Propagation, 1968, 16(2): 172–175. doi: 10.1109/TAP.1968.1139138
    LIU Chunlin and VAIDYANATHAN P P. Remarks on the spatial smoothing step in coarray MUSIC[J]. IEEE Signal Processing Letters, 2015, 22(9): 1438–1442. doi: 10.1109/lsp.2015.2409153
    PAL P and VAIDYANATHAN P P. Coprime sampling and the music algorithm[C]. 2011 Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE), Sedona, USA, 2011: 289–294. doi: 10.1109/DSP-SPE.2011.5739227.
    BLOOM G S and GOLOMB S W. Applications of numbered undirected graphs[J]. Proceedings of the IEEE, 1977, 65(4): 562–570. doi: 10.1109/PROC.1977.10517
    PAL P and VAIDYANATHAN P P. Nested arrays: A novel approach to array processing with enhanced degrees of freedom[J]. IEEE Transactions on Signal Processing, 2010, 58(8): 4167–4181. doi: 10.1109/tsp.2010.2049264
    LIU Chunlin and VAIDYANATHAN P P. Super nested arrays: Linear sparse arrays with reduced mutual coupling—Part I: Fundamentals[J]. IEEE Transactions on Signal Processing, 2016, 64(15): 3997–4012. doi: 10.1109/TSP.2016.2558159
    LIU Chunlin and VAIDYANATHAN P P. Super nested arrays: Linear sparse arrays with reduced mutual coupling—Part II: High-order extensions[J]. IEEE Transactions on Signal Processing, 2016, 64(16): 4203–4217. doi: 10.1109/TSP.2016.2558167
    LIU Chunlin and VAIDYANATHAN P P. Hourglass arrays and other novel 2-D sparse arrays with reduced mutual coupling[J]. IEEE Transactions on Signal Processing, 2017, 65(13): 3369–3383. doi: 10.1109/TSP.2017.2690390
    VAIDYANATHAN P P and PAL P. Sparse sensing with co-prime samplers and arrays[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 573–586. doi: 10.1109/TSP.2010.2089682
    李建峰, 沈明威, 蒋德富. 互质阵中基于降维求根的波达角估计算法[J]. 电子与信息学报, 2018, 40(8): 1853–1859. doi: 10.11999/JEIT171087

    LI Jianfeng, SHEN Mingwei, and JIANG Defu. Reduced-dimensional root finding based direction of arrival estimation for coprime array[J]. Journal of Electronics &Information Technology, 2018, 40(8): 1853–1859. doi: 10.11999/JEIT171087
    AHMED A, ZHANG Y D, and ZHANG Jiankang. Coprime array design with minimum lag redundancy[C]. ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, United Kingdom, 2019: 4125–4129. doi: 10.1109/ICASSP.2019.8683315.
    冯明月, 何明浩, 陈昌孝, 等. 基于Bessel先验快速稀疏贝叶斯学习的互质阵列DOA估计[J]. 电子与信息学报, 2018, 40(7): 1604–1611. doi: 10.11999/JEIT170951

    FENG Mingyue, HE Minghao, CHEN Changxiao, et al. DOA estimation for co-prime array based on fast sparse Bayesian learning using Bessel priors[J]. Journal of Electronics &Information Technology, 2018, 40(7): 1604–1611. doi: 10.11999/JEIT170951
    QIN Si, ZHANG Y D, and AMIN M G. Generalized coprime array configurations for direction-of-arrival estimation[J]. IEEE Transactions on Signal Processing, 2015, 63(6): 1377–1390. doi: 10.1109/TSP.2015.2393838
    ZHANG Yankui, XU Haiyun, ZONG Rong, et al. A novel high degree of freedom sparse array with displaced multistage cascade subarrays[J]. Digital Signal Processing, 2019, 90: 36–45. doi: 10.1016/j.dsp.2019.04.005
    RAZA A, LIU Wei, and SHEN Qing. Thinned coprime array for second-order difference co-array generation with reduced mutual coupling[J]. IEEE Transactions on Signal Processing, 2019, 67(8): 2052–2065. doi: 10.1109/TSP.2019.2901380
    孙兵, 阮怀林, 吴晨曦, 等. 基于Toeplitz协方差矩阵重构的互质阵列DOA估计方法[J]. 电子与信息学报, 2019, 41(8): 1924–1930. doi: 10.11999/JEIT181041

    SUN Bing, RUAN Huailin, WU Chenxi, et al. Direction of arrival estimation with coprime array based on Toeplitz covariance matrix reconstruction[J]. Journal of Electronics &Information Technology, 2019, 41(8): 1924–1930. doi: 10.11999/JEIT181041
    WANG Xinghua, CHEN Zhenhong, REN Shiwei, et al. DOA estimation based on the difference and sum coarray for coprime arrays[J]. Digital Signal Processing, 2017, 69: 22–31. doi: 10.1016/j.dsp.2017.06.013
    SHAN Zhilong and YUM T S P. A conjugate augmented approach to direction-of-arrival estimation[J]. IEEE Transactions on Signal Processing, 2005, 53(11): 4104–4109. doi: 10.1109/tsp.2005.857012
    SCHMIDT R O. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276–280. doi: 10.1109/TAP.1986.1143830
    CHEN Zhenhong, DING Yingtao, REN Shiwei, et al. A novel nested configuration based on the difference and sum co-array concept[J]. Sensors, 2018, 18(9): 2988. doi: 10.3390/s18092988
    SHEN Qing, LIU Wei, CUI Wei, et al. Extension of nested arrays with the fourth-order difference co-array enhancement[C]. 2016 IEEE International Conference on Acoustics, Speech and Signal Processing, Shanghai, China, 2016: 2991–2995. doi: 10.1109/ICASSP.2016.7472226.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  179
  • HTML全文浏览量:  55
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-19
  • 修回日期:  2020-11-10
  • 网络出版日期:  2020-12-05
  • 刊出日期:  2021-03-22

目录

    /

    返回文章
    返回

    官方微信,欢迎关注