高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种空-频联合最优滤波的被动宽带检测方法

蒋小勇 周胜增 杜选民

蒋小勇, 周胜增, 杜选民. 一种空-频联合最优滤波的被动宽带检测方法[J]. 电子与信息学报, 2021, 43(3): 865-872. doi: 10.11999/JEIT200672
引用本文: 蒋小勇, 周胜增, 杜选民. 一种空-频联合最优滤波的被动宽带检测方法[J]. 电子与信息学报, 2021, 43(3): 865-872. doi: 10.11999/JEIT200672
Xiaoyong JIANG, Shengzeng ZHOU, Xuanmin DU. A Passive Broadband Detection Method Based on Space-frequency Joint Optimal Filtering[J]. Journal of Electronics and Information Technology, 2021, 43(3): 865-872. doi: 10.11999/JEIT200672
Citation: Xiaoyong JIANG, Shengzeng ZHOU, Xuanmin DU. A Passive Broadband Detection Method Based on Space-frequency Joint Optimal Filtering[J]. Journal of Electronics and Information Technology, 2021, 43(3): 865-872. doi: 10.11999/JEIT200672

一种空-频联合最优滤波的被动宽带检测方法

doi: 10.11999/JEIT200672
详细信息
    作者简介:

    蒋小勇:男,1981年生,高级工程师,研究方向为水声信号处理

    周胜增:男,1981年生,研究员,硕士生导师,研究方向为声呐技术、水声信号处理

    杜选民:男,1970年生,研究员,博士生导师,研究方向为水声对抗技术、声呐技术

    通讯作者:

    周胜增 view222@sina.com

  • 中图分类号: TN911.5

A Passive Broadband Detection Method Based on Space-frequency Joint Optimal Filtering

  • 摘要: 常规宽带能量检测在多目标、强干扰环境下输出信噪比(SNR)降低,检测性能大幅度下降。针对此问题,该文提出一种将子阵导向最小方差(STMV)宽带空域自适应波束形成与频域Eckart滤波结合的空-频联合最优滤波宽带检测方法。该方法首先通过子阵导向最小方差波束形成进行空间自适应处理,利用自适应波束形成的干扰抑制能力在空域实现最优滤波;然后通过最大似然估计实时估计信号和噪声的功率谱,构造Eckart滤波对自适应波束形成的输出分配不同权重进行加权滤波,从而实现频域信噪比最大化。所提方法通过空-频联合最优滤波,降低空域旁瓣干扰和频带内噪声的影响,使得输出信噪比最大,从而有效地改善目标宽带检测能力,提高被动声呐的宽带检测性能。仿真和试验数据处理结果验证了该方法的有效性。
  • 图  1  基于Eckart滤波的宽带检测框图

    图  2  基于Eckart滤波的宽带检测流程图

    图  3  常规CBF输出

    图  4  STMV输出

    图  5  SASTMV输出

    图  6  基于Eckart滤波SASTMV输出

    图  7  Eckart滤波权

    图  8  常规宽带能量检测

    图  9  STMV宽带能量检测

    图  10  SASTMV宽带能量检测

    图  11  基于Eckart滤波SASTMV宽带能量检测

    图  12  宽带能量检测输出(t=60 s)

    图  13  合作目标输出信噪比

    表  1  4种算法性能比较

    CBFSTMVSASTMV本文算法
    合作目标平均输出信噪比(dB)–6.5–4.8–5.25.8
    计算时间(s)0.542.020.850.91
    下载: 导出CSV
  • SUOJOKI T, TABUS I, and MERTSALMI P. A novel target detection method for passive broadband system[C]. The Seventh European Conference on Underwater Acoustics, Delft, Netherland, 2004: 999–1006.
    ZARNICH B E. A fresh look at broadband passive sonar processing[C]. The Adaptive Sensor Array Processing Workshop, Lexington, USA, 1999: 99–104.
    杨晨辉, 马远良, 杨益新. 峰值能量检测及其在被动声呐显示中的应用[J]. 应用声学, 2003, 22(5): 31–35. doi: 10.3969/j.issn.1000-310X.2003.05.008

    YANG Chenhui, MA Yuanliang, and YANG Yixin. Peak energy detection with application to passive sonar display[J]. Journal of Applied Acoustics, 2003, 22(5): 31–35. doi: 10.3969/j.issn.1000-310X.2003.05.008
    权恒恒, 徐晓男, 杜栓平. 基于隐马尔科夫模型的SPED弱目标检测算法[J]. 声学与电子工程, 2016(1): 1–4, 9.

    QUAN Hengheng, XU Xiaonan, and DU Shuanping. Weak target detection algorithm for SPED based on Hidden Markov model[J]. Acoustics and Electronics Engineering, 2016(1): 1–4, 9.
    郑兆宁, 向大威. 水声信号被动检测与参数估计理论[M]. 北京: 科学出版社, 1983.

    ZHENG Zhaoning and XIANG Dawei. Parametric Estimation Theory and Passive Detection of Underwater Acoustic Signal[M]. Beijing: Science Press, 1983.
    MEHTA S K, FAY J, and MACIEJEWSKI P. A modified Eckart post-beamformer filter for improved detection using broadband features[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings, Atlanta, USA, 1996, 6: 3045–3048. doi: 10.1109/ICASSP.1996.550518.
    王聪, 刘雄厚, 范文涛, 等. 基于着色处理的被动声纳宽带能量检测方法[C]. 中国声学学会水声学分会2019年学术会议论文集, 南京, 中国, 2019: 516–518.

    WANG Cong, LIU Xionghou, FAN Wentao, et al. Passive sonar broadband energy detection based on coloring[C]. Underwater Acoustics Society of China Academic Conference 2019, Nanjing, China, 2019: 516–518.
    KROLIK J and SWINGLER D. Multiple broad-band source location using steered covariance matrices[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(10): 1481–1494. doi: 10.1109/29.35386
    KIM J S and LEE J H. MVDR method using subband decomposition for high frequency resolution in passive sonar system[C]. Undersea Defence Technology, Cheju, Korea, 2002.
    LI Jian, STOICA P, and WANG Zhisong. Doubly constrained robust capon beamformer[J]. IEEE Transactions on Signal Processing, 2004, 52(9): 2407–2423. doi: 10.1109/TSP.2004.831998
    SOMASUNDARAM S D. Wideband robust capon beamforming for passive sonar[J]. IEEE Journal of Oceanic Engineering, 2013, 38(2): 308–322. doi: 10.1109/JOE.2012.2223560
    毛卫宁, 钱进. 一种低复杂度的稳健自适应波束形成[J]. 应用声学, 2019, 38(4): 540–544. doi: 10.11684/j.issn.1000-310X.2019.04.010

    MAO Weining and QIAN Jin. A low-complexity robust adaptive beamformer[J]. Journal of Applied Acoustics, 2019, 38(4): 540–544. doi: 10.11684/j.issn.1000-310X.2019.04.010
    周胜增, 杜选民. 稳健的子带子阵级导向最小方差波束形成算法[J]. 声学学报, 2019, 44(4): 707–714. doi: 10.15949/j.cnki.0371-0025.2019.04.031

    ZHOU Shengzeng and DU Xuanmin. A robust subband subarray steered minimum variance beamforming algorithm[J]. Acta Acustica, 2019, 44(4): 707–714. doi: 10.15949/j.cnki.0371-0025.2019.04.031
    王昊, 徐晓男, 马启明. 一种利用少快拍数据的宽带干扰鲁棒性抑制算法[J]. 电子与信息学报, 2019, 41(4): 851–857. doi: 10.11999/JEIT180505

    WANG Hao, XU Xiaonan, and MA Qiming. A robust broadband interference suppression algorithm based on few snapshots[J]. Journal of Electronics &Information Technology, 2019, 41(4): 851–857. doi: 10.11999/JEIT180505
    李涛, 蒋小勇, 周胜增. 基于宽带稳健STMV波束形成的相关检测方法[J]. 声学技术, 2019, 38(5): 600–603. doi: 10.16300/j.cnki.1000-3630.2019.05.020

    LI Tao, JIANG Xiaoyong, and ZHOU Shengzeng. Correlation detection based on wideband robust STMV beamforming[J]. Technical Acoustics, 2019, 38(5): 600–603. doi: 10.16300/j.cnki.1000-3630.2019.05.020
    刘倩, 朱安珏. 基于二阶锥规划的稳健低旁瓣自适应波束形成[J]. 声学技术, 2020, 39(3): 379–384. doi: 10.16300/j.cnki.1000-3630.2020.03.021

    LIU Qian and ZHU Anjue. Second-order cone programming based robust low sidelobe adaptive beamforming[J]. Technical Acoustics, 2020, 39(3): 379–384. doi: 10.16300/j.cnki.1000-3630.2020.03.021
    KNABE D S. Time-domain beam signals for adaptive beamforming[C]. Undersea Defence Technology, Stockholm, Sweden, 2019.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  79
  • HTML全文浏览量:  41
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-04
  • 修回日期:  2020-12-24
  • 网络出版日期:  2021-01-05
  • 刊出日期:  2021-03-22

目录

    /

    返回文章
    返回

    官方微信,欢迎关注