高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分辨率约束下毫米波雷达波形参数及接收权联合设计

王洪雁 薛喜扬 杨小峰 汪祖民

王洪雁, 薛喜扬, 杨小峰, 汪祖民. 分辨率约束下毫米波雷达波形参数及接收权联合设计[J]. 电子与信息学报. doi: 10.11999/JEIT200978
引用本文: 王洪雁, 薛喜扬, 杨小峰, 汪祖民. 分辨率约束下毫米波雷达波形参数及接收权联合设计[J]. 电子与信息学报. doi: 10.11999/JEIT200978
Hongyan WANG, Xiyang XUE, Xiaofeng YANG, Zumin WANG. The Joint Design of Millimeter-wave Radar Waveform Parameters and Receiving Weight under Resolution Constraints[J]. Journal of Electronics and Information Technology. doi: 10.11999/JEIT200978
Citation: Hongyan WANG, Xiyang XUE, Xiaofeng YANG, Zumin WANG. The Joint Design of Millimeter-wave Radar Waveform Parameters and Receiving Weight under Resolution Constraints[J]. Journal of Electronics and Information Technology. doi: 10.11999/JEIT200978

分辨率约束下毫米波雷达波形参数及接收权联合设计

doi: 10.11999/JEIT200978
基金项目: 国家自然科学基金(61301258, 61871164),浙江省自然科学基金重点项目(LZ21F010002),中国博士后科学基金(2016M590218),国防科技重点实验室基金(61424010106)
详细信息
    作者简介:

    王洪雁:男,1979年生,副教授,博士,研究方向为MIMO雷达信号处理、毫米波通信、机器视觉

    薛喜扬:女,1996年生,硕士生,研究方向为雷达信号处理、毫米波通信

    杨小峰:男,1982年生,讲师,博士,研究方向为阵列信号处理、模拟电路设计

    汪祖民:男,1975年生,教授,博士,研究方向为信号处理、机器学习

    通讯作者:

    王洪雁 gglongs@163.com

  • 中图分类号: TN958

The Joint Design of Millimeter-wave Radar Waveform Parameters and Receiving Weight under Resolution Constraints

Funds: The National Natural Science Foundation of China (61301258, 61871164), Key Projects of Natural Science Foundation of Zhejiang Province (LZ21F010002), China Postdoctoral Science Foundation(2016M590218), National Defense Science and Technology Key Laboratory Foundation (61424010106)
  • 摘要: 针对自动驾驶中有限平台空间及发射功率导致毫米波雷达目标检测性能较低的问题,该文提出一种距离及速度分辨率约束下提升毫米波雷达目标检测概率的波形参数及接收权联合设计方法。首先,基于调频连续波(FMCW)信号,所提方法建立了毫米波相控阵阵列检测模型;其次,通过分析距离及速度分辨率与发射波形参数关系,构建考虑距离及速度分辨率的发射波形参数约束;然后,基于最大化输出信杂噪比(SCNR)准则,建立具有距离及速度分辨率约束的发射波形参数及接收权值联合优化模型以改善毫米波雷达目标检测及距离速度分辨性能;最后,所提方法基于交替迭代方法求解所得复杂非线性优化问题。仿真结果表明,所提方法可自适应调整发射波形参数和接收权以提升目标检测性能同时满足距离及速度分辨率需求。
  • 图  1  所提算法及未优化FMCW所得波束方向图

    图  2  不同距离分辨率约束下优化波形实部、虚部以及调制频率与距离分辨率关系图

    图  3  不同速度分辨率约束下优化波形实部、虚部以及扫频周期与速度分辨率关系图

    图  4  远近距离下所提算法及未优化FMCW所得输出SCNR随CNR或SNR的变化曲线

    图  5  远近距离下单独优化接收权值、调制频率以及扫频周期所得输出SCNR随CNR变化曲线

    图  6  所提算法所得输出SCNR随迭代次数变化曲线

    图  7  远近距离下目标做匀速运动及机动运动所得输出SCNR随CNR变化曲线

    表  1  远近距离下雷达参数设置

    目标初始距离${R_0}{\rm{(m)}}$距离分辨率$\Delta R({\rm{m)}}$速度分辨率$\Delta v({\rm{m/s}})$最大可检测距离${R_{\max }}({\rm{m)}}$扫频周期数$L$
    $0 < {R_0} < 75$$\Delta R \le 0.1$$\Delta v \le 0.3$$75$$512$
    $75 \le {R_0} \le 200$$\Delta R \le 0.5$$\Delta v \le 1.0$$200$$256$
    下载: 导出CSV
  • ZHANG Cheng, CAO Mengde, GONG Yuqin, et al. Calibration of motional frequency spread for wide-band FMCW automotive millimeter-wave radar[J]. IEEE Access, 2020, 8: 14355–14366. doi: 10.1109/ACCESS.2020.2966222
    LI Xin, TAO Xiaowen, ZHU Bing, et al. Research on a simulation method of the millimeter wave radar virtual test environment for intelligent driving[J]. Sensors, 2020, 20(7): 1929. doi: 10.3390/s20071929
    ZHANG Xiaowen, WANG Kaizhi, and LIU Xingzhao. Adaptive waveform optimization design for target detection in cognitive radar[J]. Journal of Applied Remote Sensing, 2017, 11(1): 015024. doi: 10.1117/1.JRS.11.015024
    XU Huaping, ZHANG Jiawei, LIU Wei, et al. High-resolution radar waveform design based on target information maximization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(5): 3577–3587. doi: 10.1109/TAES.2020.2976085
    BILIK I, LONGMAN O, VILLEVAL S, et al. The rise of radar for autonomous vehicles: Signal processing solutions and future research directions[J]. IEEE Signal Processing Magazine, 2019, 36(5): 20–31. doi: 10.1109/MSP.2019.2926573
    STOVE A G. Linear FMCW radar techniques[J]. IEE Proceedings F-Radar and Signal Processing, 1992, 139(5): 343–350. doi: 10.1049/ip-f-2.1992.0048
    ZENG Tao, CHANG Shaoqiang, FAN Huayu, et al. Design and processing of a novel chaos-based stepped frequency synthesized wideband radar signal[J]. Sensors (Basel) , 2018, 18(4): 985. doi: 10.3390/s18040985
    ROHLING H and MOLLER C. Radar waveform for automotive radar systems and applications[C]. 2008 IEEE Radar Conference, Rome, Italy, 2008: 1–4. doi: 10.1109/RADAR.2008.4721121.
    NGUYEN Q, PARK M, KIM Y, et al. 77 GHz waveform generator with multiple frequency shift keying modulation for multi-target detection automotive radar applications[J]. Electronics Letters, 2015, 51(8): 595–596. doi: 10.1049/el.2015.0092
    KRONAUGE M and ROHLING H. New chirp sequence radar waveform[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(4): 2870–2877. doi: 10.1109/TAES.2014.120813
    TAGHAVI I, SABAHI M F, and PARVARESH F. High resolution compressed sensing radar using difference set codes[J]. IEEE Transactions on Signal Processing, 2019, 67(1): 136–148. doi: 10.1109/TSP.2018.2878545
    HYUN E and LEE J H. Waveform design with dual ramp-sequence for high-resolution range-velocity FMCW radar[J]. Elektronika Ir Elektrotechnika, 2016, 22(4): 46.
    KIM W, CHO H, KIM J, et al. YOLO-based simultaneous target detection –51. doi: 10.5755/j01.eie.22.4.15916.
    WANG Shuangling, HE Qian, and HE Zishu. LFM-based waveform design for cognitive MIMO radar with constrained bandwidth[J]. EURASIP Journal on Advances in Signal Processing, 2014, 2014(1): 89. doi: 10.1186/1687-6180-and classification in automotive FMCW radar systems[J]. Sensors, 2020, 20(10): 2897. doi: 10.3390/s20102897.
    PATOLE S M, TORLAK M, WANG Dan, et al. Automotive radars: A review of signal processing techniques[J]. IEEE Signal Processing Magazine, 2017, 34(2): 22–35. doi: 10.1109/MSP.2016.2628914
    郝天铎, 周青松, 孙从易, 等. 非准确先验知识下认知雷达低峰均比稳健波形设计[J]. 电子与信息学报, 2018, 40(3): 532–540. doi: 10.11999/JEIT170560

    HAO Tianduo, ZHOU Qingsong, SUN Congyi, et al. Low-PAR robust waveform design for cognitive radar with imprecise prior knowledge[J]. Journal of Electronics &Information Technology, 2018, 40(3): 532–540. doi: 10.11999/JEIT170560
    WANG Hongyan and PEI Bingnan. Robust waveform design for MIMO-STAP in the case of imperfect clutter prior knowledge[J]. Journal of Signal Processing, 2015, 31(11): 1418–1424. doi: 10.1007/s00034-015-0116-3
    PIOTROWSKY L, JAESCHKE T, KUEPPERS S, et al. Enabling high accuracy distance measurements with FMCW radar sensors[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(12): 5360–5371. doi: 10.1109/TMTT.2019.2930504
    WON Y S, SHIN D, JUNG S, et al. Method to improve degraded range resolution due to non-ideal factors in FMCW radar[J]. IEICE Electronics Express, 2019, 16(1): 20180924. doi: 10.1587/elex.15.20180924
    HAKOBYAN G and YANG Bin. High-performance automotive radar: A review of signal processing algorithms and modulation schemes[J]. IEEE Signal Processing Magazine, 2019, 36(5): 32–44. doi: 10.1109/MSP.2019.2911722
    IVANOV S I, KUPTSOV V D, and FEDOTOV A A. The signal processing algorithm of automotive FMCW radars with an extended range of speed estimation[J]. Journal of Physics: Conference Series, 2019, 1236: 012081. doi: 10.1088/1742-6596/1236/1/012081
    DATTA B N. Numerical Linear Algebra and Applications[M]. 2nd ed. Philadelphia: Society for Industrial and Applied Mathematics, 2010.
    李慧, 赵永波, 程增飞. 基于线性调频时宽的MIMO雷达正交波形设计[J]. 电子与信息学报, 2018, 40(5): 1151–1158. doi: 10.11999/JEIT170426

    LI Hui, ZHAO Yongbo, and CHENG Zengfei. MIMO radar orthogonal waveform set design based on chirp durations[J]. Journal of Electronics &Information Technology, 2018, 40(5): 1151–1158. doi: 10.11999/JEIT170426
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  95
  • HTML全文浏览量:  31
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-17
  • 修回日期:  2021-02-20
  • 网络出版日期:  2021-03-03

目录

    /

    返回文章
    返回

    官方微信,欢迎关注