高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分数阶谱相减的语音增强法

王振力 张雄伟

王振力, 张雄伟. 基于分数阶谱相减的语音增强法[J]. 电子与信息学报, 2007, 29(5): 1096-1100. doi: 10.3724/SP.J.1146.2005.01002
引用本文: 王振力, 张雄伟. 基于分数阶谱相减的语音增强法[J]. 电子与信息学报, 2007, 29(5): 1096-1100. doi: 10.3724/SP.J.1146.2005.01002
Wang Zhen-li, Zhang Xiong-wei. A Method Based on Fractional Spectral Subtraction for Speech Enhancement[J]. Journal of Electronics and Information Technology, 2007, 29(5): 1096-1100. doi: 10.3724/SP.J.1146.2005.01002
Citation: Wang Zhen-li, Zhang Xiong-wei. A Method Based on Fractional Spectral Subtraction for Speech Enhancement[J]. Journal of Electronics and Information Technology, 2007, 29(5): 1096-1100. doi: 10.3724/SP.J.1146.2005.01002

基于分数阶谱相减的语音增强法

doi: 10.3724/SP.J.1146.2005.01002
基金项目: 

江苏省自然科学基金(BK2006001)和江苏省图像处理与图像通信实验室(KJS03036)资助课题

A Method Based on Fractional Spectral Subtraction for Speech Enhancement

  • 摘要: 该文提出了基于分数阶谱相减的语音增强法(FSS)。该方法通过对带噪语音信号作分数阶傅里叶变换(FRFT),将得到的分数阶语噪混合谱与估计的分数阶噪声谱相减,最后利用分数阶Fourier反变换获得去噪后的语音信号。理论分析表明,所提方法存在一个最佳分数阶阶数,使得语噪混合信号能在分数阶变换域得到最好的分离,从而有效地提高了增强语音的性能。计算机仿真表明,对于混有加性白噪声的男/女声发音信号,所提方法在信噪比提高量和Itakura距离减少量两个方面都优于传统的谱相减法(SS),并且增强语音中的音乐噪声得到了明显抑制。
  • [1] Ozaktas H M, Barshan B, Mendlovic D, and Onural L. Convolution, filtering. and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms. J. Opt. Soc. Amer. A, 1994, 11(2): 547-559.[2]Namias V. The fractional Fourier transform and its application in quantum mechanics[J].J. Inst. Maths. Application.1980, 25(1):241-265[3]McBride A C and Kerr F H. On Namiass fractional Fourier transform[J].IMAJ. Applied Math.1987, 39(2):159-175[4]Almeida L B. The fractional Fourier transform and time-frequency representations[J].IEEE Trans. on Signal Processing.1994, 42(11):3084-3091[5]Ozaktas H M, Arikan O, Kutay M A, and Bozdagi G. Digital computation of The fractional Fourier transform[J].IEEE Trans. on Signal Processing.1996, 44(9):2141-2150[6]Candan C, Kutay M A, and Ozaktas H M. The discrete fractional Fourier transform[J].IEEE Trans. on Signal Processing.2000, 48(5):1329-1337[7]Vogel K and Risken H. Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase[J].Phys. Rev. A.1989, 40(5):2847-2849[8]Mendlovic D, Ozaktas H M, and Lohmann A W. Fractional correlation[J].Appl. Opt.1995, 34(2):303-309[9]Fonollosa J R and Nikias C L. A new positive time-frequency distribution. in Pro. IEEE Int. Conf. Acoust., Speech, Signal Processing, New Jersey, 1994: 301-304.[10]Boll S F. Suppression of acoustic noise in speech using spectral subtraction. IEEE Trans. on Acoust, Speech, Signal Processing, 1979, ASSP-27(2): 113-120.[11]Sim B L, Tong Y C, Chang J S, and Tan C T. A parametric formulation of the generalized spectral subtraction method[J].IEEE Trans. on. Speech and Audio Processing.1998, 6(4):328-337[12]Berouti M, Schwartz R, and Makhoul J. Enhancement of speech corrupted by acoustic noise. in Proc. ICASSP, Washington DC, 1979: 208-211.[13]Kushner W M, Vladimir G, Wu C, Nguyen V, and Damoulakis J N. The effects of subtractive-type speech enhancement/noise reduction algorithms on parameter estimation for improved recognition and coding in high noise environments. In Proc. ICASSP, Glasgow Scotland, 1989: 211-214.[14]Widrow B, et al.. Adaptive noise cancelling, principles and applications[J].IEEE Proc.1975, 63(12):1692-1716[15]Frazier R H.[J].Samsam S, Braida L D, and Oppenheim A V. Enhancement of speech by adaptive filtering. ICASSP76, Philadelphia.1976,:-[16]Gibson J D, Koo B, and Gray S D. Filtering of colored noise for speech enhancement and coding. IEEE Trans. on Acoust., Speech, Signal Processing, 1991, ASSP-39(8): 1732-1742.[17]Lim J S and Oppenheim A V. All-pole modeling of degraded speech. IEEE Trans. on Acoust., Speech, Signal Processing, 1978, ASSP-26(3): 197-210.[18]Ephraim Y. A Bayesian estimation approach for speech enhancement using Hidden Markov models[J].IEEE Trans. on Signal Processing.1992, 40(4):725-735[19]Ephraim Y, Malah D, and Juang H. On the application of Hidden Markov models for enhancing noise speech[J].IEEE Trans. on Acoust., Speech, Signal Processing.1989, 37(12):1846-1856[20]Knecht W G, Schenkel M E, and Moschytz G S. Neural network filters for speech enhancement[J].IEEE Trans. on Speech. Audio Processing.1995, 3(6):433-438[21]Donoho D L. De-Noising by Soft-Thresholding[J].IEEE Trans. on Inform. Theory.1995, 41(3):613-627[22]Donoho D L and Johnstone I M. Adapting to Unknown Smoothness via Wavelet Shrinkage[J].Journal of the American Statistical Association.1995, 90(432):1200-1224[23]Donoho D L, Johnstone I M, Kerkyacharian G and Picard D. Wavelet Shrink: Asymptopia. Journal of the Royal Statistical Society, Series B, 1995, 57(2): 301-369.[24]Ephraim Y and Van Trees H L. A signal subspace approach for speech enhancement[J].IEEE Trans. on Speech Audio Processing.1995, 3(4):251-266[25]Mittal U and Phamdo N. Signal/noise KLT based approach for enhancing speech degraded by colored noise[J].IEEE Trans. on Speech Audio Processing.2000, 8(2):159-167[26]Rezayee A and Gazor S. An adaptive KLT approach for speech enhancement[J].IEEE Trans. on Speech Audio Processing.2001, 9(2):87-95[27]Santhanam B and McClellan J H. The discrete rotational Fourier transform. IEEE Trans. on Signal Processing, 1996, 42(4): 994-998.[28]Pei Soo-Chang, Yeh Min-Huang, and Tseng Chien-Cheng. Discrete fractional Fourier Transforms based on orthogonal projections[J].IEEE Trans. on Signal Processing.1999, 47(5):1335-1347[29]平先军,陶然, 周思永等. 一种新的分数阶Fourier变换快速算法. 电子学报, 2001, 29(3): 406-408.[30]Wang D L and Lim J S. The unimportance of phase in speech enhancement. IEEE Trans. on Acoust., Speech, Signal Processing, 1982, ASSP-30(8): 679-681.[31]Picinbono B. Random Signals and Systems. Englewood Cliffs, NJ: Prentice Hall, 1993: 136-138.[32]Spiegel M R. Schaums Outline of Theory and Problems of Mathematical Handbook of Formulas and Tables. Int.ed. New York: McGrawHill, 1990.
  • [1] 金艳, 陈鹏辉, 姬红兵.  脉冲噪声下基于压缩变换函数的LFM信号参数估计, 电子与信息学报. doi: 10.11999/JEIT200342
    [2] 张天骐, 全盛荣, 强幸子, 江晓磊.  基于多尺度Chirplet稀疏分解和Wigner-Ville变换的时频分析方法, 电子与信息学报. doi: 10.11999/JEIT160750
    [3] 李真, 吴文锦, 张勤, 任慧.  基于最大后验相位估计的多带谱减语音增强算法, 电子与信息学报. doi: 10.11999/JEIT161381
    [4] 王晶, 尹栋, 蒋涉权, 杨立东, 谢湘.  基于参数估计和感知提升的语音增强降噪算法, 电子与信息学报. doi: 10.11999/JEIT150504
    [5] 杜兰, 史蕙若, 李林森, 孙永光, 胡靖.  基于分数阶傅里叶变换的窄带雷达飞机目标回波特征提取方法, 电子与信息学报. doi: 10.11999/JEIT161035
    [6] 王金伟, 周春飞, 王水平, 陈北京, 孙星明.  基于分数阶四元数傅里叶变换的彩色图像自适应水印算法, 电子与信息学报. doi: 10.11999/JEIT160169
    [7] 章雒霏, 张铭, 李晨.  一种新的语音和噪声活动检测算法及其在手机双麦克风消噪系统中的应用, 电子与信息学报. doi: 10.11999/JEIT151302
    [8] 李睿, 陈殿仁.  基于双本振同步Nyguist折叠接收机的多分量LFM信号检测及参数估计, 电子与信息学报. doi: 10.11999/JEIT140281
    [9] 王钊, 顾红, 苏卫民, 陈志仁, 陈金立.  基于共轭噪声组的宽带噪声雷达机动目标参数估计, 电子与信息学报. doi: 10.11999/JEIT140737
    [10] 朱建军, 魏玉阔, 杜伟东, 李海森.  基于分数阶傅里叶变换的Chirp浅剖精细探测方法, 电子与信息学报. doi: 10.11999/JEIT140140
    [11] 鲁溟峰, 张峰, 倪国强, 陶然.  工程采样系统的分数阶傅里叶域分析与改进, 电子与信息学报. doi: 10.3724/SP.J.1146.2012.01545
    [12] 郇浩, 陶然, 李元硕, 王越, 王桂英.  基于变换域和时域联合处理的雷达同频干扰抑制方法, 电子与信息学报. doi: 10.3724/SP.J.1146.2012.00766
    [13] 李丽, 邱天爽.  基于分数阶傅里叶变换的双基地雷达线性调频信号的参数联合估计新方法, 电子与信息学报. doi: 10.3724/SP.J.1146.2011.00788
    [14] 杨立春, 钱沄涛.  基于相干性滤波器的广义旁瓣抵消器麦克风小阵列语音增强方法, 电子与信息学报. doi: 10.3724/SP.J.1146.2012.00557
    [15] 周彬, 邹霞, 张雄伟.  基于多元Laplace语音模型的语音增强算法, 电子与信息学报. doi: 10.3724/SP.J.1146.2011.01312
    [16] 杨金禄, 单涛, 陶然.  数字电视辐射源雷达的相参积累徙动补偿方法, 电子与信息学报. doi: 10.3724/SP.J.1146.2010.00414
    [17] 张雯雯, 司锡才.  一种新的mc-PPS瞬时频率变化率的估计, 电子与信息学报. doi: 10.3724/SP.J.1146.2007.01855
    [18] 李锋, 朱世华, 荣玫.  FRFT-OFDM系统中FRFT域变换角度的估计, 电子与信息学报. doi: 10.3724/SP.J.1146.2007.00554
    [19] 卜凡亮, 王为民, 戴启军, 陈砚圃.  基于噪声被掩蔽概率的优化语音增强方法, 电子与信息学报.
    [20] 郑元谨, 李乐民, 闻懋生.  基于小波变换的自适应多分辨率语音增强算法, 电子与信息学报.
  • 加载中
  • 计量
    • 文章访问数:  2785
    • HTML全文浏览量:  33
    • PDF下载量:  970
    • 被引次数: 0
    出版历程
    • 收稿日期:  2005-08-15
    • 修回日期:  2006-04-12
    • 刊出日期:  2007-05-19

    目录

      /

      返回文章
      返回

      官方微信,欢迎关注