高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压缩视频超分辨率重建技术

徐忠强 朱秀昌

徐忠强, 朱秀昌. 压缩视频超分辨率重建技术[J]. 电子与信息学报, 2007, 29(2): 499-505. doi: 10.3724/SP.J.1146.2005.01199
引用本文: 徐忠强, 朱秀昌. 压缩视频超分辨率重建技术[J]. 电子与信息学报, 2007, 29(2): 499-505. doi: 10.3724/SP.J.1146.2005.01199
Xu Zhong-qiang, Zhu Xiu-chang. Super-resolution Reconstruction Technology for Compressed Video[J]. Journal of Electronics and Information Technology, 2007, 29(2): 499-505. doi: 10.3724/SP.J.1146.2005.01199
Citation: Xu Zhong-qiang, Zhu Xiu-chang. Super-resolution Reconstruction Technology for Compressed Video[J]. Journal of Electronics and Information Technology, 2007, 29(2): 499-505. doi: 10.3724/SP.J.1146.2005.01199

压缩视频超分辨率重建技术

doi: 10.3724/SP.J.1146.2005.01199
基金项目: 

江苏省自然科学基金(BK 2004151)资助课题

Super-resolution Reconstruction Technology for Compressed Video

  • 摘要: 超分辨率图像重建就是由低分辨率图像序列来估计高分辨率图像,而压缩视频的重建正成为当前研究的热点。本文首先分析了压缩视频重建的基础,建立了高、低分辨率图像间的关系,给出了量化噪声和运动矢量的模型;接着对目前最具有代表性的最大后验概率(MAP)算法、凸集投影(POCS)算法和迭代反向投影(IBP)算法进行了详细的阐述,并分别给出了实验结果;然后分析了运算的复杂度,介绍了几种实时化方法;最后针对目前存在的问题进行了展望,指出降质模型、运动估计、重建算法和实时应用将是今后研究的重点。
  • [1] [1] Harris J L. Diffraction and resolving power[J].Journal of the Opt. Soc. of America.1964, 54 (7):931-936 [2] Tsai R and Huang T. Multi-frame image restoration and registration. Advances in Computer Vision and Image Processing, 1984, (1): 317-339. [3] Hunt B R. Super-resolution of imagery: Understanding the basis for recovery of spatial frequencies beyond the diffraction limit. Proceedings of Information, Decision and Control, Adelaide, Australia, 1999: 243-248. [4] Park S C, Park M K, and Kang M G. Super-resolution image reconstruction: A technical overview[J].IEEE Signal Processing Magazine.2003, 20(3):21-36 [5] Segall C A, Molina R, and Katsaggelos A K. High-Resolution Images from Low-resolution Compressed Video[J].IEEE Signal Processing Magazine.2003, 20(3):37-48 [6] Lam E Y and Goodman J W. A mathematical analysis of the DCT coefficient distributions for images[J].IEEE Trans. on Image Processing.2000, 9(10):1661-1666 [7] Robertson M A and Stevenson R L. DCT quantization noise in compressed images[J].IEEE Trans. on Circuits and Systems for Video Technology.2005, 15(1):27-38 [8] Chen D and Schultz R R. Extraction of high-resolution video stills from MPEG image sequences. IEEE Int. Conf. Image Processing, Chicago, IL, 1998, vol.2: 465-469. [9] Segall C A, Molina R, Katsaggelos A K, and Mateos J. Reconstruction of high-resolution image frames from a sequence of low-resolution and compressed observations. IEEE Int. Conf. Acoustics, Speech, Signal Processing, Orlando, Florida, 2002, vol.2: 1701-1704. [10] Park S C, Kang M G, Segall C A, and Katsaggelos A K. Spatially adaptive high-resolution image reconstruction of low-resolution DCT-based compressed images[J].IEEE Trans. on Image Processing.2004, 13(4):573-585 [11] Gunturk B K, Altunbasak Y, and Mersereau R M. Multi-frame resolution-enhancement methods for compressed video[J].IEEE Signal Processing Letters.2002, 9(6):170-174 [12] Mateos J, Katsaggelos A K, and Molina R. Simultaneous motion estimation and resolution enhancement of compressed low resolution video. IEEE Int. Conf. Image Processing, Vancouver, BC, 2000, vol.2: 653-656. [13] Segall C A, Katsaggelos A K, Molina R, and Mateos J. Bayesian resolution enhancement of compressed video[J].IEEE Trans. on Image Processing.2004, 13(7):898-911 [14] Gunturk B K, Antunbasak Y, and Mersereau R. Bayesian resolution-enhancement framework for transform-coded video. IEEE Int. Conf. Image Processing, Thessaloniki, Greece, 2001, vol.2: 41-44. [15] Gunturk B K, Altunbasak Y, and Mersereau R M. Super-resolution reconstruction of compressed video using transform-domain statistics[J].IEEE Trans. on Image Processing.2004, 13(1):33-43 [16] Segall C A, Katsaggelos A K, Molina R, and Mateos J. Super- Resolution from Compressed Video. In Super-Resolution Imaging. S. Chaudhuri, Ed. Norwell, MA: Kluwer, 2001: 211-242. [17] Stark H and Oskoui P. High-resolution image recovery from image-plane arrays, using convex projections[J].Journal of the Opt. Soc. of America (A.1989, 6 (11):1715-1726 [18] Patti A J, Sezan M I, and Tekalp A M. Super-resolution video reconstruction with arbitrary sampling lattices and nonzero aperture time[J].IEEE Trans. on Image Processing.1997, 6(8):1064-1076 [19] Paek H and Kim R. On the POCS-based post-processing technique to reduce the blocking artifacts in transform coded images. IEEE Trans. on Circuits and Systems for Video Technology, 1998, l8 (6): 358-367. [20] Altunbasak Y, Patti A J, and Mersereau R M. Super- resolution still and video reconstruction from MPEG coded video[J].IEEE Trans. on Circuits and System for Video Technology.2002, 12(4):217-226 [21] Irani M and Oskoui S. Improving resolution by image registration. Computer Vision, Graphics, and Image Processing, 1991, 53(5): 231-239 [22] Tom B C. Resolution enhancement of monochrome and color video using motion compensation[J].IEEE Trans. on Image Processing.2001, 10(2):278-287 [23] 张地, 杜明辉. POCS超分辨率图像重构的快速算法. 信息技术, 2004 , 28(7): 1-10. [24] Elad M and Feuer A. Super-resolution restoration of an image sequence: Adaptive filtering approach[J].IEEE Trans. on Image Processing.1999,8(3):387-395 [25] Elad M and Feuer A. Super-resolution reconstruction of continuous image sequences. IEEE Int. Conf. Image Processing, Kobe, Japan, Oct. 1999, vol. 3: 459-463. [26] Alam M S, Bognar J G, Hardie R C, and Yasuda B J. Infrared image registration and high-resolution reconstruction using multiple translationally shifted aliased video frames[J].IEEE Trans. on Instrumentation and Measurement.2000, 49(5):915-923 [27] 韩玉兵, 陈小蔷,吴乐南. 一种视频序列的超分辨率重建算法. 电子学报, 2005, 33(1):126-130. [28] Callic G M, Llopis R P, and Sethuraman R. Low-cost implementation of a super-resolution algorithm for real-time video application. IEEE Int. Sym. Circuits and Systems, Kobe, Japan, 2005: 6130-6133. [29] Weiss Y and Adelson E H. A unified mixture framework for motion segmentation: incorporating spatial coherence and estimating the number of models. IEEE Computer Soc. Conf. Computer Vision and Pattern Recognition, San Francisco, California, 1996: 321-326. [30] Luettgen M R, Karl W C, and Willsky A S. Efficient multiscale regularization with applications to the computation of optical flow[J].IEEE Trans. on Image Processing.1994, 3(1):41-64 [31] 杜娟, 余英林, 谢胜利. 基于半像素运动信息的快速超分辨率图像重构算法. 华南理工大学学报(自然科学版), 2005, 33(5): 53-58. [32] Freeman W T, Jones T R, and Pasztor E C. Example-based super-resolution. IEEE Computer Graphics and Applications, 2002, 22 (2): 56-65. [33] Robertson M A and Stevenson R L. Temporal resolution enhancement in compressed video sequences. EURASIP Journal on Applied Signal Processing, 2001, 4: 230-238. [34] Shechtman E, Caspi Y, and Irani M. Space-time super- resolution[J].IEEE Trans. on Pattern Anal. Machine Intell.2005, 27(4):531-545 [35] 潘逢治, 张立明. 用神经网络恢复残差的图像超分辨率算法. 电子学报, 2004, 32(1): 162-165. [36] Borman S and Stevenson R L. Simultaneous multi-frame MAP super-resolution video enhancement using spatio- temporal priors. IEEE Int. Conf. Image Processing, Kobe, Japan, 1999, vol.3: 469-473. [37] Choi M G, Yang Y, and Galatsanos N P. Multichannel regularized recovery of compressed video sequences[J].IEEE Trans. on Circuits Syst. II: Analog and Digital Signal Processing.2001, 48(4):376-387 [38] Farsiu S, Robinson M D, Elad M, and Milanfar P. Fast and robust multiframe super resolution[J].IEEE Trans. on Image Processing.2004, 13(10):1327-1344 [39] Lee E and Kang M G. Regularized adaptive high-resolution image reconstruction considering inaccurate subpixel registration[J].IEEE Trans. on Image Processing.2003, 12(7):826-837 [40] 袁小华, 夏德深. 自适应正则有参超分辨率图像盲恢复.中国图象图形学报, 2004, 9(10): 1197-1203. [41] Sementilli P, Hunt B, and Nadar M. Analysis of the limit to super-resolution in incoherent imaging. Journal of the Opt. Soc. of America. 1993, 10(11): 2265-2276. [42] Baker S and Kanade T. Limits on super-resolution and how to break them[J].IEEE Trans. on Pattern Anal. Machine Intell.2002, 24(9):1167-1183 [43] Shahram M and Milanfar P. Imaging below the diffraction limit: A statistical analysis[J].IEEE Trans. on Image Processing.2004, 13(5):677-689
  • [1] 申滨, 吴和彪, 赵书锋, 崔太平.  基于稀疏感知有序干扰消除的大规模机器类通信系统多用户检测, 电子与信息学报. doi: 10.11999/JEIT190994
    [2] 刘解放, 王士同, 王骏, 邓赵红.  一种具有最优保证特性的贝叶斯可能性聚类方法, 电子与信息学报. doi: 10.11999/JEIT160908
    [3] 余家林, 孙季丰, 宋治国.  基于优选特征轨迹的全分辨率视频稳定, 电子与信息学报. doi: 10.11999/JEIT141019
    [4] 孙逢林, 张升伟, 刘浩, 张成.  基于滤波反投影算法的自旋式综合孔径辐射计分辨率与灵敏度分析, 电子与信息学报. doi: 10.3724/SP.J.1146.2013.01270
    [5] 卢健, 孙怡.  基于Huber范数和概率运动场的鲁棒图像超分辨重建算法, 电子与信息学报. doi: 10.3724/SP.J.1146.2014.00446
    [6] 宋海英, 何小海, 吴媛媛, 卿粼波.  一种稳健的多视频时空超分辨率重建算法, 电子与信息学报. doi: 10.3724/SP.J.1146.2010.01435
    [7] 程倩倩, 范新南, 李庆武.  基于自类推的NSCT域单幅图像超分辨率重建, 电子与信息学报. doi: 10.3724/SP.J.1146.2011.00331
    [8] 李民, 李世华, 李小文, 乐翔.  非局部联合稀疏近似的超分辨率重建算法, 电子与信息学报. doi: 10.3724/SP.J.1146.2010.01092
    [9] 金鑫, 熊金涛, 李良超, 杨建宇.  投影小波域MAP估计无源毫米波图像超分辨算法, 电子与信息学报. doi: 10.3724/SP.J.1146.2009.00547
    [10] 王素玉, 卓力, 沈兰荪, 李晓光.  一种用于动态视频超分辨率的多尺度最小二乘仿射块匹配图像配准方法, 电子与信息学报. doi: 10.3724/SP.J.1146.2007.01745
    [11] 韩玉兵, 束锋, 吴乐南.  基于加权最小二乘滤波的视频序列超分辨率重建, 电子与信息学报. doi: 10.3724/SP.J.1146.2006.01509
    [12] 徐忠强, 朱秀昌.  基于噪声分布特性的压缩视频超分辨率重建, 电子与信息学报. doi: 10.3724/SP.J.1146.2006.01255
    [13] 袁琪, 赵荣椿.  一种改进的遥感图像变化检测算法, 电子与信息学报. doi: 10.3724/SP.J.1146.2007.00614
    [14] 韩玉兵, 吴乐南, 张冬青.  基于正则化处理的超分辨率重建, 电子与信息学报. doi: 10.3724/SP.J.1146.2005.01631
    [15] 李晓辉.  改进的降低空间分辨率视频编码转换算法, 电子与信息学报. doi: 10.3724/SP.J.1146.2006.00212
    [16] 包红强, 张兆扬.  基于时空标记场最大后验概率的多视频对象分割算法, 电子与信息学报.
    [17] 万群, 杨万麟.  基于四阶累积量的后验稀疏约束迭代DOA估计方法, 电子与信息学报.
    [18] 吴乐南, 王桥.  基于多分辨率内插预测的声波勘探数据无损压缩, 电子与信息学报.
    [19] 张永军, 陈宗骘, 韩平.  幂迭代超分辨率快速算法, 电子与信息学报.
    [20] 张永军, 陈宗骘.  特征值平移超分辨率算法, 电子与信息学报.
  • 加载中
  • 计量
    • 文章访问数:  3213
    • HTML全文浏览量:  20
    • PDF下载量:  2446
    • 被引次数: 0
    出版历程
    • 收稿日期:  2005-09-19
    • 修回日期:  2006-04-03
    • 刊出日期:  2007-02-19

    目录

      /

      返回文章
      返回

      官方微信,欢迎关注