高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于弧度距离的时间序列相似度量

丁永伟 杨小虎 陈根才 KavsAJ

丁永伟, 杨小虎, 陈根才, KavsAJ. 基于弧度距离的时间序列相似度量[J]. 电子与信息学报, 2011, 33(1): 122-128. doi: 10.3724/SP.J.1146.2010.00136
引用本文: 丁永伟, 杨小虎, 陈根才, KavsAJ. 基于弧度距离的时间序列相似度量[J]. 电子与信息学报, 2011, 33(1): 122-128. doi: 10.3724/SP.J.1146.2010.00136
Ding Yong-Wei, Yang Xiao-Hu, Chen Gen-Cai, Kavs A J. Radian-distance Based Time Series Similarity Measurement[J]. Journal of Electronics and Information Technology, 2011, 33(1): 122-128. doi: 10.3724/SP.J.1146.2010.00136
Citation: Ding Yong-Wei, Yang Xiao-Hu, Chen Gen-Cai, Kavs A J. Radian-distance Based Time Series Similarity Measurement[J]. Journal of Electronics and Information Technology, 2011, 33(1): 122-128. doi: 10.3724/SP.J.1146.2010.00136

基于弧度距离的时间序列相似度量

doi: 10.3724/SP.J.1146.2010.00136

Radian-distance Based Time Series Similarity Measurement

  • 摘要: 时间序列的近似表示和相似度量是时间序列数据挖掘的重要任务之一,是进行相似匹配的关键。该文针对现有的各种基于分段线性表示(Piecewise Linear Representation,PLR)相似度量方法存在的序列长度依赖和多分辨率条件下的潜在识别误差等缺点,提出了一种序列分段线性弧度表示和基于弧度距离的相似度量方法,实现了序列的快速在线分割和相似度计算。该方法简洁直观,利用分段弧度对分段趋势进行细粒度划分来保留序列主要形态特征,有效地提高了度量结果的准确性和多分辨率条件下的稳定性。该方法具有序列分割算法独立性特点,可用于时间序列的相似查询、模式匹配、分类和聚类。
  • [1] Aigner W, Miksch S, and Mller W, et al.. Visual methods for analyzing time-oriented data[J].IEEE Transactions on Visualization and Computer Graphics (TVCG.2008, 14(1):47-60[2]Fu T, Chung F, and Luk R, et al.. Stock time series pattern matching: template-based vsrule-based approaches[J].. Engineering Applications of Artificial Intelligence.2007, 20(3):347-364[3]林子雨,杨冬青,王腾蛟. 用基于移动均值的索引实现时间序列相似查询[J]. 软件学报, 2008, 19(9): 2349-2361.Lin Zi-yu, Yang Dong-qing, and Wang Teng-jiao. Similarity search of time series with moving average based indexing[J].Journal of Software.2008, 19(9):2349-2361[4]靳碧,荣冈. BT: 一种快速序列搜索算法[J]. 浙江大学学报(工学版), 2007, 41(4): 621-625.Jin Bi and Rong Gang. BT: fast sequence search algorithm[J]. Journal of Zhejiang University (Engineering Science), 2007, 41(4): 621-625.[5]Johannes Afalg.[J].Hans-Peter Kriegel, and Peer Krger, et al.. Probabilistic similarity search for uncertain time series[C]. Proceedings of the 21st International Conference on Scientific and Statistical Database Management (SSDBM), New Orleans, LA, USA, Jun. 2-.2009,:-[6]Al-Naymat G and Taheri J. Effects of dimensionality reduction techniques on time series similarity measurement[C]. The 6th ACS/IEEE International Conference on Computer Systems and Applications, Doha, Qatar, Mar.31-Apr.4, 2008: 188-195.[7]Shatkay H and Zdonik S B. Approximate queries and representations for large data sequences[C]. Proceedings of the 12th International Conference on Data Engineering, New Orleans, Louisiana, Feb.26-Mar.1, 1996: 536-545.[8]王达,荣冈. 时间序列的模式距离[J]. 浙江大学学报(工学版), 2004, 38(7): 795-798.Wang Da and Rong Gang. Pattern distance of time series[J]. Journal of Zhejiang University (Engineering Science), 2004, 38(7): 795-798.[9]董晓莉,顾成奎,王正欧. 基于形态的时间序列相似性度量研究[J].电子与信息学报.2007, 29(5):1228-1231浏览Dong Xiao-li, Gu Cheng-kui, and Wang Zheng-ou. Research on shape-based time series similarity measure[J].Journal of Electronics Information Technology.2007, 29(5):1228-1231[10]张鹏,李学仁,张建业,等. 时间序列的夹角距离及相似性搜索[J]. 模式识别与人工智能, 2008, 21(6): 763-767.Zhang Peng, Li Xue-ren, and Zhang Jian-ye, et al.. Included angle distance of time series and similarity search[J]. Pattern Recognition and Artificial Intelligence, 2008, 21(6): 763-767.[11]Keogh E J. Fast similarity search in the presence of longitudinal scaling in time series databases[C]. Proceedings of the 9th International Conference on Tools with Artificial Intelligence, Newport Beach, CA, USA, Nov.3-8, 1997: 578-584.[12]Keogh E J, Chu S, and Hart D, et al.. Segmentation Time Series: A Survey and Novel Approach[M]. Data Mining in Time Series Databases. Singapore: World Scientific Publishing Co., 2004: 1-22.[13]Keogh E J and Pazzani M J. Relevance feedback retrieval of time series data[C]. Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Berkeley, CA, USA, Aug. 15-19, 1999: 183-190.[14]Chang Pei-chann, Fan Chin-yuan, and Liu Chen-hao. Integrating a piecewise linear representation method and a neural network model for stock trading points prediction[J]. IEEE Transactions on System, Man, and Cybernetics, 2009, 30(1): 80-92.[15]Perng C S, Wang H, and Zhang S R. Landmarks: a new model for similarity-based pattern querying in time series databases[C]. Proceedings of the 16th International Conference on Data Engineering, San Diego, CA, USA, Feb.28-Mar.3, 2000: 33-42.[16]Phetking C, Sap M, and Selamat A. Identifying zigzag based perceptually important points for indexing financial time series[C]. Proceedings of the 8th International Conference on Cognitive Informatics, Hong Kong, China, Jun. 15-17, 2009: 295-301.[17]Kirkpatrick C D and Dahlquist J R. Technical Analysis: The Complete Resource for Financial Market Technicians[M]. 1st edition, Canada: Financial Time Prentice Hall, 2006: 11-12.[18]Pratt K and Fink E. Search for patterns in compressed time series[J]. International Journal of Image and Graphics, World Scientific, 2000, 2(1): 89-106.
  • [1] 王开军, 曾元鹏, 缪忠剑.  差异区域平衡法探索时间序列变化的因果关系, 电子与信息学报. doi: 10.11999/JEIT200756
    [2] 孙彦景, 杨玉芬, 刘东林, 施文娟.  基于内在生成机制的多尺度结构相似性图像质量评价, 电子与信息学报. doi: 10.11999/JEIT150616
    [3] 吴虎胜, 张凤鸣, 钟斌.  基于二维奇异值分解的多元时间序列相似匹配方法, 电子与信息学报. doi: 10.3724/SP.J.1146.2013.00866
    [4] 冯海山, 徐晓滨, 文成林.  基于证据相似性度量的冲突性区间证据融合方法, 电子与信息学报. doi: 10.3724/SP.J.1146.2011.00851
    [5] 刘博宁, 张建业, 张鹏, 王占磊.  基于曲率距离的时间序列相似性搜索方法, 电子与信息学报. doi: 10.3724/SP.J.1146.2012.00019
    [6] 王晓东, 郭雷, 方俊, 董淑福.  一种基于EMD的文档语义相似性度量, 电子与信息学报. doi: 10.3724/SP.J.1146.2007.00177
    [7] 胡庆彬, 卢元元.  分段线性动态系统周期轨道的时域法求解及其稳定性分析, 电子与信息学报. doi: 10.3724/SP.J.1146.2006.00902
    [8] 陈希有, 李冠林.  基于Shilnikov定理构造分段线性混沌系统, 电子与信息学报. doi: 10.3724/SP.J.1146.2007.00130
    [9] 侯澍旻, 李友荣, 刘光临.  一种基于KS检验的时间序列非线性检验方法, 电子与信息学报. doi: 10.3724/SP.J.1146.2005.00998
    [10] 邓丽, 金立左, 费树岷.  基于组合相似性的视频检索, 电子与信息学报. doi: 10.3724/SP.J.1146.2006.00165
    [11] 董晓莉, 顾成奎, 王正欧.  基于形态的时间序列相似性度量研究, 电子与信息学报. doi: 10.3724/SP.J.1146.2005.01310
    [12] 李晓明, 沈海斌, 严晓浪.  一种分段线性映射的混沌随机数发生器特性研究, 电子与信息学报.
    [13] 卢琨, 刘兴钊.  短序列条件下基于分段多项式建模方法的相位估计性能分析, 电子与信息学报.
    [14] 雷敏, 王志中.  非线性时间序列的替代数据检验方法研究, 电子与信息学报.
    [15] 张嵩, 汪元美.  基于广义径向基函数神经网络的非线性时间序列预测器, 电子与信息学报.
    [16] 温郑铨, 杜培明, 郭春生.  规范化分段线性化网络的可控开关模型, 电子与信息学报.
    [17] 马霓, 王锦山, 韦岗.  时间序列非线性模型的研究, 电子与信息学报.
    [18] 温郑铨.  规范化分段线性化电阻网络多解的实用算法, 电子与信息学报.
    [19] 刘波涛, 李瀚荪.  分段线性电阻网络的拓扑分析法, 电子与信息学报.
    [20] 蔡千.  非线性直流故障电路的规范型分段线性分析, 电子与信息学报.
  • 加载中
  • 计量
    • 文章访问数:  3535
    • HTML全文浏览量:  44
    • PDF下载量:  1647
    • 被引次数: 0
    出版历程
    • 收稿日期:  2010-02-05
    • 修回日期:  2010-07-26
    • 刊出日期:  2011-01-19

    目录

      /

      返回文章
      返回

      官方微信,欢迎关注