高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Daubechies尺度函数的共形MRTD方法研究及其电磁散射应用

高强业 周建江 曹群生

高强业, 周建江, 曹群生. 基于Daubechies尺度函数的共形MRTD方法研究及其电磁散射应用[J]. 电子与信息学报, 2011, 33(1): 136-141. doi: 10.3724/SP.J.1146.2010.00271
引用本文: 高强业, 周建江, 曹群生. 基于Daubechies尺度函数的共形MRTD方法研究及其电磁散射应用[J]. 电子与信息学报, 2011, 33(1): 136-141. doi: 10.3724/SP.J.1146.2010.00271
Gao Qiang-Ye, Zhou Jian-Jiang, Cao Qun-Sheng. Research and Application to Electromagnetic Scattering of Conformal MRTD Method Based on Daubechies Scaling Functions[J]. Journal of Electronics and Information Technology, 2011, 33(1): 136-141. doi: 10.3724/SP.J.1146.2010.00271
Citation: Gao Qiang-Ye, Zhou Jian-Jiang, Cao Qun-Sheng. Research and Application to Electromagnetic Scattering of Conformal MRTD Method Based on Daubechies Scaling Functions[J]. Journal of Electronics and Information Technology, 2011, 33(1): 136-141. doi: 10.3724/SP.J.1146.2010.00271

基于Daubechies尺度函数的共形MRTD方法研究及其电磁散射应用

doi: 10.3724/SP.J.1146.2010.00271
基金项目: 

国家自然科学基金(60771018)资助课题

Research and Application to Electromagnetic Scattering of Conformal MRTD Method Based on Daubechies Scaling Functions

  • 摘要: 为了降低Yee氏蛙跳式网格划分的台阶误差,该文对3维曲面导体目标进行精确电磁建模,将时域多分辨(MRTD)算法与共形时域有限差分(CFDTD)算法结合,提出一种新的基于Daubechies尺度函数的共形时域多分辨(CMRTD)方法。该文提出将基于Daubechies尺度函数的MRTD迭代公式分解为若干传统FDTD迭代公式的线性组合,然后对最里面回路上的FDTD分解式运用局部共形技术,再将各个分解式进行线性组合,从而得到CMRTD结果。仿真结果表明,CMRTD方法既保持了MRTD方法节省计算资源、计算效率高等优点,同时明显提高了计算的精度。
  • Krumpholz M and Katehi L. MRTD: new time-domain schemes based on multiresolution analysis [J].IEEE Transactions on Microwave Theory and Techniques.1996, 44(4):555-571[2]Taflove A and Hagness S C. Computational Electrodynamics The Finite-Difference Time-Domain Method (3rd Edition) [M]. MA: Artech House, 2005: 51-80.[3]Cheong Y W, Lee Y M, and Ra K H, et al.. Wavelet-Galerkin scheme of time-dependent inhomogeneous electro-magnetic problems [J].IEEE Microwave and Guided Wave Letters.1999, 9(8):297-299[4]Fujii M and Hoefer W J R. Dispersion of time domain wavelet Galerkin method based on Daubechies compactly supported scaling functions with three and four vanishing moments [J].IEEE Microwave and Guided Wave Letters.2000, 10(4):125-127[5]Chen Yin-chao, Cao Qun-sheng, and Mittra R. Multiresolution Time Domain Scheme for Electromagnetic Engineering [M]. NJ: Wiley, 2005: 238-296.[6]姜宇,于少鹏,高红友. 基于Daubechies小波的MRTD在电磁散射中的应用[J]. 光学精密工程,2008, 16(10): 2014-2019.Jiang Yu, Yu Shao-peng, and Gao Hong-you. Application of Daubechies-wavelet-based MultiResolution Time Domain to electromagnetic scattering [J]. Optics and Precision Engneering, 2008, 16(10): 2014-2019.[7]代少玉,吴振森. 时域小波Galerkin法在有耗地面与任意目标复合散射中的应用[J]. 物理学报,2008, 57(12): 7635-7640.Dai Shao-yu and Wu Zhen-sen. Application of wavelet- Galerkin time domain method in the composite scattering of target and lossy ground [J]. Acta Physica Sinica, 2008, 57(12): 7635-7640.[8]Jiang Yu, Yu Shao-peng, and Gao Hong-you, et al.. Application of Daubechies-wavelet based MRTD schemes to electromagnetic scattering [C]. IEEE International Conference on Industrial Informatics, INDIN 2008, Daejeon, Korea, 2008: 623-626.[9]Gao Qiang-ye, Cao Qun-sheng, and Zhou Jian-jiang. Application of total-field/scattered-field technique to 3D-MRTD scattering scheme [C]. 2009 International Forum on Information Technology and Applications, Chengdu, China, 2009, 1: 359-362.[10]高强业,周建江,曹群生. MRTD方法的色散特性分析和电磁散射应用[J]. 南京航空航天大学学报,2010, 42(2): 191-197.Gao Qiang-ye, Zhou Jian-jiang, and Cao Qun-sheng. Analysis of dispersion properties and electromagnetic scattering applications for the MRTD method [J]. Journal of Nanjing University of Aeronautics and Astronautics, 2010, 42(2): 191-197.[11]Daubechies I. Ten Lectures on Wavelets [M]. PA: SIAM, 1992: 194-202.[12]Zhu Xian-yang, Dogaru T, and Carin L. Analysis of the CDF biorthogonal MRTD method with application to PEC targets [J].IEEE Transactions on Microwave Theory and Techniques.2003, 51(9):2015-2022[13]Dey S and Mittra R. A locally conformal Finite-Difference Time-Domain (FDTD) algorithm for modeling three- dimensional perfectly conducting objects [J].IEEE Microwave and Guided Wave Letters.1997, 7(9):273-275[14]Li Qing-liang, Dong Hui, and Tang Wei, et al.. A simplified CFDTD algorithm for scattering analysis [C]. 2003 6th International Symposium on Antennas and propagation and EM Proceedings, Beijing, China, 2003: 404-407.[15]Sha Wei, Wu Xian-liang, and Huang Zhi-xiang, et al.. A new conformal FDTD(2,4) scheme for modeling three- dimensional curved perfectly conducting objects [J].IEEE Microwave and Wireless Components Letters.2008, 18(3):149-151[16]Du Hong. Mie-scattering calculation [J].Applied Optics.2004, 43(9):1951-1956[17]Gedney S D. An anisotropic perfectly matched layer- absorbing medium for the truncation of FDTD lattices [J].IEEE Transactions on Antennas and Propagation.1996, 44(12):1630-1639[18]Woo A C, Wang H T G, and Schuh M J, et al.. Benchmark radar targets for the validation of computational electromagnetics programs [J].IEEE Antennas and Propagation Magazine.1993, 35(1):84-89
  • 加载中
计量
  • 文章访问数:  3130
  • HTML全文浏览量:  15
  • PDF下载量:  636
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-03-23
  • 修回日期:  2010-09-06
  • 刊出日期:  2011-01-19

目录

    /

    返回文章
    返回

    官方微信,欢迎关注