高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类新型超混沌系统的非线性反馈同步研究

郑皓洲 胡进峰 徐威 刘立东 何子述

郑皓洲, 胡进峰, 徐威, 刘立东, 何子述. 一类新型超混沌系统的非线性反馈同步研究[J]. 电子与信息学报, 2011, 33(4): 844-848. doi: 10.3724/SP.J.1146.2010.00807
引用本文: 郑皓洲, 胡进峰, 徐威, 刘立东, 何子述. 一类新型超混沌系统的非线性反馈同步研究[J]. 电子与信息学报, 2011, 33(4): 844-848. doi: 10.3724/SP.J.1146.2010.00807
Zheng Hao-Zhou, Hu Jin-Feng, Xu Wei, Liu Li-Dong, He Zi-Shu. Study on Synchronization of a New Class of Hyperchaotic Systems Using Nonlinear Feedback Control[J]. Journal of Electronics and Information Technology, 2011, 33(4): 844-848. doi: 10.3724/SP.J.1146.2010.00807
Citation: Zheng Hao-Zhou, Hu Jin-Feng, Xu Wei, Liu Li-Dong, He Zi-Shu. Study on Synchronization of a New Class of Hyperchaotic Systems Using Nonlinear Feedback Control[J]. Journal of Electronics and Information Technology, 2011, 33(4): 844-848. doi: 10.3724/SP.J.1146.2010.00807

一类新型超混沌系统的非线性反馈同步研究

doi: 10.3724/SP.J.1146.2010.00807
基金项目: 

国家部委基金(9140A07011609DZ0216),博士点基金(200806141026)和中央高校基本科研业务费专项资金(ZYGX2009J011)资助课题

Study on Synchronization of a New Class of Hyperchaotic Systems Using Nonlinear Feedback Control

  • 摘要: 一类由快变和慢变吸引子构成的新型超混沌系统,具有强的抗噪声能力,但是采用传统同步算法时,同步收敛速度较慢,同步性能对响应系统参数敏感。针对该问题,该文提出非线性反馈同步算法,根据Hurwitz稳定原理,设计非线性控制变量,使得误差方程雅可比矩阵的特征值实部均小于零,并使得特征值的绝对值较大。该算法比传统同步算法收敛速度快,并且具有对系统参数不敏感的优点。仿真结果验证了上述算法的有效性。
  • Pisarchik A N and Oliveras F R. Optical chaotic communication using generalized and complete synchronization[J]. IEEE Journal of Quantum Electronics, 2010, 46(3): 299(a)-299(f).[2] Li Ke-zan, Zhao Ming-chao, and Fu Xin-chu. Projective synchronization of drivingresponse systems and its application to secure communication[J]. IEEE Transactions on Circuits and Systems-I: Regular Papers, 2009, 56(10): 2280-2291.[3] Carroll T L. Chaotic systems that are robust to added noise[J]. Chaos, 2005, 15(1): 013901(1)-013901(7).[4] Kurian A P and Leung H. Weak signal estimation in chaotic clutter using model-based coupled synchronization[J]. IEEE Transactions on Circuits and Systems-I: Regular Papers, 2009, 56(4): 820-828.[5] Grosu I, Banerjee R, and Roy P K, et al.. Design of coupling for synchronization of chaotic oscillators[J]. Physical Review E, 2009, 80(1): 016212(1)-016212(8).[6] Sorrentino F, Barlev G, and Cohen A B, et al.. The stability of adaptivesynchronization in chaotic systems[J]. Chaos, 2010, 20(1): 013103(1)-013103(10).[7] Pecora L M and Carroll T L. Synchronization in chaotic systems[J]. Physical Review Letters, 1990, 94(8): 821-825.[8] 程丽, 张入元, 彭建华. 用单一驱动变量同步混沌与超混沌的一种方法[J]. 物理学报, 2003, 52(3): 536-541.Cheng Li, Zhang Ru-yuan, and Peng Jian-hua. A method for synchronizing chaos and hyperchaos by single driving varlable[J]. Acta Physica Sinica, 2003, 52(3): 536-541.[9] Lora A. Masterslave synchronization of fourth-order l chaotic oscillators via Linear Output Feedback[J]. IEEE Transactions on Circuits and SystemsII: Express Briefs, 2010, 57(3): 213-217.[10] Yang Chun-yu, Zhang Qing-ling, and Lin Yan-ping, et al.. Positive realness and absolute stability problem of descriptor systems[J]. IEEE Transactions on Circuits and SystemsI: Regular Papers, 2007, 54(5): 1142-1149.[11] Alonge F, Branciforte M, and Motta F. A novel method of distance measurement based on pulse position modulation and synchronization of chaotic signals using ultrasonic radar systems[J]. IEEE Transactions on Instrumentation And Measurement, 2009, 58(2): 318-329.
  • 加载中
计量
  • 文章访问数:  2931
  • HTML全文浏览量:  38
  • PDF下载量:  766
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-08-05
  • 修回日期:  2010-11-11
  • 刊出日期:  2011-04-19

目录

    /

    返回文章
    返回

    官方微信,欢迎关注