## 留言板

 引用本文: 胡苓苓, 郭业才. 基于粒子群优化的正交小波盲均衡算法[J]. 电子与信息学报, 2011, 33(5): 1253-1256.
Hu Ling-Ling, Guo Ye-Cai. An Orthogonal Wavelet Transform Blind Equalization Algorithm Based on the Optimization of Particle Swarm[J]. Journal of Electronics and Information Technology, 2011, 33(5): 1253-1256. doi: 10.3724/SP.J.1146.2010.01043
 Citation: Hu Ling-Ling, Guo Ye-Cai. An Orthogonal Wavelet Transform Blind Equalization Algorithm Based on the Optimization of Particle Swarm[J]. Journal of Electronics and Information Technology, 2011, 33(5): 1253-1256.

## An Orthogonal Wavelet Transform Blind Equalization Algorithm Based on the Optimization of Particle Swarm

• 摘要: 为克服常数模算法(CMA)收敛速度慢、稳态误差大的缺点，在分析正交小波常数模盲均衡算法(WT-CMA)基础上，该文提出了基于粒子群优化的正交小波常模盲均衡算法(PSO-WT- CMA)。该算法利用粒子群的信息共享机制和有效的全局搜索特点，寻找最优的均衡器权值，并用正交小波变换降低信号的自相关性。水声仿真结果表明：与常数模算法(CMA)、基于粒子群优化的常数模盲均衡算法(PSO-CMA)和基于正交小波变换的常数模盲均衡算法(WT-CMA)相比，该算法在提高收敛速度和减小码间干扰方面的性能有很大的改善。
•  [1] zen A, Kaya I, and Soysal B. Variable step-size constant modulus algorithm employing fuzzy logic controller[J]. Wireless Personal Communications, 2010, 54(2): 237-250.[2] 韩迎鸽, 郭业才, 李保坤, 周巧喜. 引入动量项的正交小波变换盲均衡算法[J]. 系统仿真学报, 2008, 20(6): 1559-1562.Han Ying-ge, Guo Ye-cai, Li Bao-kun, and Zhou Qiao-xi. Momentum term and orthogonal wavelet-based blind equalization alorithm [J]. Journal of System Simulation, 2008, 20(6): 1559-1562.[3] Gamot R M and Mesa A. Particle swarm optimization-tabu search approach to constrained engineering optimization problems[J]. WSEAS Transactions on Mathematics, 2008, 7(11): 666-675.[4] Sedighizadeh D and Masehian E. Particle swarm optimization methods, taxonomy and applications[J]. International Journal of Computer Theory and Engineering, 2009, 5(1): 486-501.[5] Zhan Z H, Zhang J, Li Y, and Chung H S H. Adaptive particle swarm optimization[J]. IEEE Transactions on Systems Man, and CyberneticsPart B: Cybernetics, 2009, 39(6): 1362-1381.[6] 林川, 冯全源. 基于粒子群优化算法思想的组合自适应滤波算法[J]. 电子与信息学报, 2009, 31(5): 1245-1248.Lin Chuan and Feng Quan-yuan. Combined adaptive filtering algorithm based on the idea of particle swarm optimization [J]. Journal of Electronics Information Technology, 2009, 31(5): 1245-1248.[7] 吕强, 刘世荣. 一种信息充分交流的粒子群优化算法[J].电子学报, 2010, 38(3): 664-667.L Qiang and Liu Shi-rong. A particle swarm optimization algorithm with fully communicated Information[J]. Acta Electronica Sinica, 2010, 38(3): 664-667.[8] Praveen Kumar Tripathi, Sanghamitra Bandyopadhyay, and Sankar Kumar Pal. Multi-Objective particle swarm optimization with time variant inertia and acceleration coefficents[J]. Information Sciences, 2007, 177(22) 50335049.[9] 刘祖军, 徐海生, 王杰令, 易克初. 一种新的混合信道盲均衡算法[J]. 电子与信息学报, 2009, 31(7): 1606-1609.Liu Zu-jun, Xu Hai-sheng, Wang Jie-ling, and Yi Ke-chu. A novel hybrid blind channel equalization algorithm[J]. Journal of Electronics Information Technology, 2009, 31(7): 1606-1609.[10]zen A, Kaya I, and Soysal B. Design of a fuzzy based outer loop controller for improving the training performance of LMS algorithm[C]. In Third International Conference on Intelligent Computing, ICIC 2007, August 21-24, Qingdao, China. 2007, Vol.2: 1051-1063. [11] Yang Chao, Guo Ye-cai, and Zhu Jie. Super-exponential iterative blind equalization algorithm based on orthogonal wavelet packet transform. Proceedings of the 9th International Conference on Signal Processing, Beijing, Oct. 26-29, 2008: 1830-1833.[12] Abrar S and Nandi A K. An adaptive constant modulus blind equalization algorithm and its stochastic stability analysis[J]. IEEE Signal Processing Letters, 2010, 17(1): 55-58.[13] Zhang Yin-bing, Zhao Jun-wei, Guo Ye-cai, and Li Jin-ming. A constant modulus algorithm for blind equalization in noise[J]. Applied Acoustics, 2010, 71(7): 653-660.[14] Guo Ye-cai, Zhao Xue-qing, Liu Zhen-xin, and Gao Min. A modified T/2 fractionally spaced coordinate transformation blind equalization algorithm[J]. International Journal Communications, Network and System Sciences, 2010, 3(12): 183-189.
•  [1] 马济通, 邱天爽, 李蓉, 夏楠, 李景春.  脉冲噪声下基于Renyi熵的分数低阶双模盲均衡算法, 电子与信息学报. doi: 10.11999/JEIT170366 [2] 马济通, 邱天爽, 李蓉, 夏楠, 李景春.  基于概率密度函数匹配与分数低阶矩的并行盲均衡算法, 电子与信息学报. doi: 10.11999/JEIT160841 [3] 黄焱, 邱钊洋, 欧阳喜.  基于星座软信息的猝发信号盲均衡算法, 电子与信息学报. doi: 10.11999/JEIT160420 [4] 武岩波, 朱敏.  一种用于水声通信的喷泉码最大似然译码方法, 电子与信息学报. doi: 10.11999/JEIT150572 [5] 胡颖, 庄雷, 兰巨龙, 马丁.  基于自适应协同进化粒子群算法的虚拟网节能映射研究, 电子与信息学报. doi: 10.11999/JEIT151434 [6] 张凯, 于宏毅, 胡赟鹏, 沈智翔.  稀疏信道下基于稀疏贝叶斯学习的精简星座盲均衡算法, 电子与信息学报. doi: 10.11999/JEIT151307 [7] 石长安, 刘一民, 王希勤, 于鹏.  基于帕累托最优的雷达-通信共享孔径研究, 电子与信息学报. doi: 10.11999/JEIT151377 [8] 曾乐雅, 许华, 王天睿.  自适应切换双模盲均衡算法, 电子与信息学报. doi: 10.11999/JEIT160099 [9] 景连友, 何成兵, 张玲玲, 孟庆微, 黄建国, 张群飞.  水声通信中基于软判决的块迭代判决反馈均衡器, 电子与信息学报. doi: 10.11999/JEIT150669 [10] 罗亚松, 许江湖, 胡洪宁, 贺静波, 陈占伟.  正交频分复用传输速率最大化自适应水声通信算法研究, 电子与信息学报. doi: 10.11999/JEIT150440 [11] 许浩, 朱敏, 武岩波.  一种水声通信中的多阵元Turbo均衡算法, 电子与信息学报. doi: 10.3724/SP.J.1146.2013.01027 [12] 张歆, 张小蓟.  水声信道中的迭代分组判决反馈均衡器, 电子与信息学报. doi: 10.3724/SP.J.1146.2012.00948 [13] 阮秀凯, 蒋啸, 刘莉, 谈燕花.  一族新的Bussgang类指数拓展多模盲均衡算法, 电子与信息学报. doi: 10.3724/SP.J.1146.2012.01544 [14] 李进, 冯大政, 刘文娟.  快速QAM信号多模盲均衡算法, 电子与信息学报. doi: 10.3724/SP.J.1146.2012.00609 [15] 唐怀东, 朱敏, 武岩波.  一种水声通信Turbo均衡中的软迭代信道估计算法, 电子与信息学报. doi: 10.3724/SP.J.1146.2012.00820 [16] 周跃海, 李芳兰, 陈楷, 童峰.  低信噪比条件下时间反转扩频水声通信研究, 电子与信息学报. doi: 10.3724/SP.J.1146.2011.01410 [17] 杨大龙, 陈大海, 张健, 陈志强.  高阶调制通用恒模盲均衡算法, 电子与信息学报. doi: 10.3724/SP.J.1146.2012.00619 [18] 秋小强, 杨海钢, 周发标, 谢元禄.  长互连链延时功耗建模与基于混合粒子群算法的优化, 电子与信息学报. doi: 10.3724/SP.J.1146.2010.01114 [19] 许军, 汪芙平, 王赞基.  一族新Bussgang类盲均衡算法, 电子与信息学报. doi: 10.3724/SP.J.1146.2007.00380 [20] 许军, 汪芙平, 王赞基.  数据复用在Bussgang类盲均衡算法中的应用, 电子与信息学报. doi: 10.3724/SP.J.1146.2007.00326
• 点击查看大图
##### 计量
• 文章访问数:  2845
• HTML全文浏览量:  19
• PDF下载量:  692
• 被引次数: 0
##### 出版历程
• 收稿日期:  2010-09-25
• 修回日期:  2011-03-09
• 刊出日期:  2011-05-19

### 目录

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈

官方微信，欢迎关注